toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Zhao, G.; Hoffmann, H.; Yeluripati, J.; Xenia, S.; Nendel, C.; Coucheney, E.; Kuhnert, M.; Tao, F.; Constantin, J.; Raynal, H.; Teixeira, E.; Grosz, B.; Doro, L.; Kiese, R.; Eckersten, H.; Haas, E.; Cammarano, D.; Kassie, B.; Moriondo, M.; Trombi, G.; Bindi, M.; Biernath, C.; Heinlein, F.; Klein, C.; Priesack, E.; Lewan, E.; Kersebaum, K.-C.; Rötter, R.; Roggero, P.P.; Wallach, D.; Asseng, S.; Siebert, S.; Gaiser, T.; Ewert, F. url  doi
openurl 
  Title (up) Evaluating the precision of eight spatial sampling schemes in estimating regional means of simulated yield for two crops Type Journal Article
  Year 2016 Publication Environmental Modelling & Software Abbreviated Journal Env. Model. Softw.  
  Volume 80 Issue Pages 100-112  
  Keywords Crop model; Stratified random sampling; Simple random sampling; Clustering; Up-scaling; Model comparison; Precision gain; species distribution models; systems simulation; weather data; large-scale; design; soil; optimization; growth; apsim; autocorrelation  
  Abstract We compared the precision of simple random sampling (SimRS) and seven types of stratified random sampling (StrRS) schemes in estimating regional mean of water-limited yields for two crops (winter wheat and silage maize) that were simulated by fourteen crop models. We found that the precision gains of StrRS varied considerably across stratification methods and crop models. Precision gains for compact geographical stratification were positive, stable and consistent across crop models. Stratification with soil water holding capacity had very high precision gains for twelve models, but resulted in negative gains for two models. Increasing the sample size monotonously decreased the sampling errors for all the sampling schemes. We conclude that compact geographical stratification can modestly but consistently improve the precision in estimating regional mean yields. Using the most influential environmental variable for stratification can notably improve the sampling precision, especially when the sensitivity behavior of a crop model is known.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1364-8152 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4724  
Permanent link to this record
 

 
Author Persson, T.; Höglind, M.; Gustavsson, A.-M.; Halling, M.; Jauhiainen, L.; Niemeläinen, O.; Thorvaldsson, G.; Virkajärvi, P. doi  openurl
  Title (up) Evaluation of the LINGRA timothy model under Nordic conditions Type Journal Article
  Year 2014 Publication Field Crops Research Abbreviated Journal Field Crops Research  
  Volume 161 Issue Pages 87-97  
  Keywords crop model; forage grass; perennial ley; simulation model; nutritive-value; climate-change; systems simulation; growth; dynamics; crop; performance; regrowth; calibration; pastures  
  Abstract Simulation models are frequently applied to determine the production potential of forage grasses under various scenarios, including climate change. Thorough calibrations and evaluations of forage grass models can help improve their applicability. This study evaluated the ability of the Light Interception and Utilization Simulator-GRAss (LINGRA) model to predict biomass yield of timothy (Phleum pratense L. cv. Grindstad) in the Nordic countries. Variety trial data for the first and second year after establishment were obtained for seven locations: Jokioinen, Finland (60 degrees 48 ‘ N; 23 degrees 29 ‘ E), Maaninka, Finland (63 degrees 09 ‘ N; 27 degrees 18 ‘ E), Korpa, Iceland (64 degrees 09 ‘ N; 21 degrees 45 ‘ W), Srheim, Norway (58 degrees 41 ‘ N; 5 degrees 39 ‘ E), Lillerud, Sweden (59 degrees 24’ N; 13 degrees 16 ‘ E), Ostersund, Sweden (63 degrees 15 ‘ N; 14 degrees 34 ‘ E) and Ulna Sweden (63 degrees 49 ‘ N; 20 degrees 13 ‘ E) from 1992 to 2012. Two calibrations of the LINGRA model were carried out using Bayesian techniques. In the first of these (SRrheim calibration), data on biomass yield and underlying variables obtained from independent field trials at Srheim were used. In the second (Nordic calibration), biomass data from the other locations were used as well. The model was validated against the remaining set of biomass yields from all locations not included in the Nordic calibration. The observed total seasonal yield the first and second year after establishment was 913 and 991 g DM m(-2) respectively on average across the locations. The corresponding average simulated yield after the Srheim calibration was 1044 (root mean square error (RMSE) 258) and 1112 g DM m(-2) (RMSE 312), respectively. After the Nordic calibration, the simulated average total seasonal yield was 863 (RMSE 242) the first year and 927 g DM m(-2) (RMSE 271) the second year after establishment. The differences between the observed and simulated first cut yield followed the same patterns, whereas the prediction accuracy for second cut yield did not differ substantially between the calibration approaches.Using the parameter set from the Nordic region decreased the model predictability at Srheim compared with only using model parameters derived from this location. These results show that using biomass data from several locations, instead of only one specific location, in the calibration of the LINGRA model improved the overall prediction accuracy of first cut dry matter yield and total seasonal dry matter yield across an environmentally heterogeneous region. To further analyse the usefulness of including multi-site data in forage grass model calibrations, other forage grass models could be evaluated against the same dataset.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0378-4290 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4634  
Permanent link to this record
 

 
Author Persson, T.; Kværnø, S.; Höglind, M. url  doi
openurl 
  Title (up) Impact of soil type extrapolation on timothy grass yield under baseline and future climate conditions in southeastern Norway Type Journal Article
  Year 2015 Publication Climate Research Abbreviated Journal Clim. Res.  
  Volume 65 Issue Pages 71-86  
  Keywords climate change scenarios; crop modelling; forage grass; lingra; soil properties; spatial variability; phleum pretense; poaceae; simulation-model; nutritive-value; systems simulation; catimo model; crop models; growth; nitrogen; scale; productivity; regrowth  
  Abstract Interactions between soil properties and climate affect forage grass productivity. Dynamic models, simulating crop performance as a function of environmental conditions, are valid for a specific location with given soil and weather conditions. Extrapolations of local soil properties to larger regions can help assess the requirement for soil input in regional yield estimations. Using the LINGRA model, we simulated the regional yield level and variability of timothy, a forage grass, in Akershus and Ostfold counties, Norway. Soils were grouped according to physical similarities according to 4 sets of criteria. This resulted in 66, 15, 5 and 1 groups of soils. The properties of the soil with the largest area was extrapolated to the other soils within each group and input to the simulations. All analyses were conducted for 100 yr of generated weather representing the period 1961-1990, and climate projections for the period 2046-2065, the Intergovernmental Panel on Climate Change greenhouse gas emission scenario A1B, and 4 global climate models. The simulated regional seasonal timothy yields were 5-13% lower on average and had higher inter-annual variability for the least detailed soil extrapolation than for the other soil extrapolations, across climates. There were up to 20% spatial intra-regional differences in simulated yield between soil extrapolations. The results indicate that, for conditions similar to these studied here, a few representative profiles are sufficient for simulations of average regional seasonal timothy yield. More spatially detailed yield analyses would benefit from more detailed soil input.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0936-577x 1616-1572 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4674  
Permanent link to this record
 

 
Author Hoffmann, H.; Zhao, G.; Asseng, S.; Bindi, M.; Biernath, C.; Constantin, J.; Coucheney, E.; Dechow, R.; Doro, L.; Eckersten, H.; Gaiser, T.; Grosz, B.; Heinlein, F.; Kassie, B.T.; Kersebaum, K.-C.; Klein, C.; Kuhnert, M.; Lewan, E.; Moriondo, M.; Nendel, C.; Priesack, E.; Raynal, H.; Roggero, P.P.; Rötter, R.P.; Siebert, S.; Specka, X.; Tao, F.; Teixeira, E.; Trombi, G.; Wallach, D.; Weihermüller, L.; Yeluripati, J.; Ewert, F. url  doi
openurl 
  Title (up) Impact of spatial soil and climate input data aggregation on regional yield simulations Type Journal Article
  Year 2016 Publication PLoS One Abbreviated Journal PLoS One  
  Volume 11 Issue 4 Pages e0151782  
  Keywords systems simulation; nitrogen dynamics; winter-wheat; crop models; data resolution; scale; water; variability; calibration; weather  
  Abstract We show the error in water-limited yields simulated by crop models which is associated with spatially aggregated soil and climate input data. Crop simulations at large scales (regional, national, continental) frequently use input data of low resolution. Therefore, climate and soil data are often generated via averaging and sampling by area majority. This may bias simulated yields at large scales, varying largely across models. Thus, we evaluated the error associated with spatially aggregated soil and climate data for 14 crop models. Yields of winter wheat and silage maize were simulated under water-limited production conditions. We calculated this error from crop yields simulated at spatial resolutions from 1 to 100 km for the state of North Rhine-Westphalia, Germany. Most models showed yields biased by <15% when aggregating only soil data. The relative mean absolute error (rMAE) of most models using aggregated soil data was in the range or larger than the inter-annual or inter-model variability in yields. This error increased further when both climate and soil data were aggregated. Distinct error patterns indicate that the rMAE may be estimated from few soil variables. Illustrating the range of these aggregation effects across models, this study is a first step towards an ex-ante assessment of aggregation errors in large-scale simulations.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-6203 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4725  
Permanent link to this record
 

 
Author Vilvert, E.; Lana, M.; Zander, P.; Sieber, S. doi  openurl
  Title (up) Multi-model approach for assessing the sunflower food value chain in Tanzania Type Journal Article
  Year 2018 Publication Agricultural Systems Abbreviated Journal Agric. Syst.  
  Volume 159 Issue Pages 103-110  
  Keywords Sunflower; Food value chain; Modelling; Tanzania; Food security; Systems Simulation; Crop Model; Agricultural Systems; Farming Systems; Yield Response; Land-Use; Water; Aquacrop; Security; Stics  
  Abstract Sunflower is one of the major oilseeds produced in Tanzania, but due to insufficient domestic production more than half of the country’s demand is imported. The improvement of the sunflower food value chain (FVC) understanding is important to ensure an increase in the production, availability, and quality of edible oil. In order to analyse causes and propose solutions to increase the production of sunflower oil, a conceptual framework that proposes the combined use of different models to provide insights about the sunflower FVC was developed. This research focus on the identification of agricultural models that can provide a better understanding of the sunflower FVC in Tanzania, especially within the context of food security improvement. A FVC scheme was designed considering the main steps of sunflower production. Thereafter, relevant models were selected and placed along each step of the FVC. As result, the sunflower FVC model in Tanzania is organized in five steps, namely (1) natural resources; (2) crop production; (3) oil processing; (4) trade; and (5) consumption. Step 1 uses environmental indicators to analyse soil parameters on soil-water models (SWAT, LPJmL, APSIM or CroSyst), with outputs providing data for step 2 of the FVC. In the production step, data from step 1, together with other inputs, is used to run crop models (DSSAT, HERMES, MONICA, STICS, EPIC or AquaCrop) that analyse the impact on sunflower yields. Thereafter, outputs from crop models serve as input for bio-economic farm models (FSSIM or MODAM) to estimate production costs and farm income by optimizing resource allocation planning for step 2. In addition, outputs from crop models are used as inputs for macro-economic models (GTAP, MAGNET or MagPie) by adjusting supply functions and environmental impacts within steps 3, 4, and 5. These models simulate supply and demand, including the processing of products to determine prices and trade volumes at market equilibrium. In turn, these data is used by bio-economic farm models to assess sunflower returns for different farm types and agro-environmental conditions. Due to the large variety of models, it is possible to assess significant parts of the FVC, reducing the need to make assumptions, while improving the understanding of the FVC.  
  Address 2018-01-25  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0308-521x ISBN Medium  
  Area Expedition Conference  
  Notes CropM, TradeM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 5187  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: