toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Angulo, C.; Gaiser, T.; Rötter, R.P.; Børgesen, C.D.; Hlavinka, P.; Trnka, M.; Ewert, F. url  doi
openurl 
  Title (down) ‘Fingerprints’ of four crop models as affected by soil input data aggregation Type Journal Article
  Year 2014 Publication European Journal of Agronomy Abbreviated Journal European Journal of Agronomy  
  Volume 61 Issue Pages 35-48  
  Keywords crop model; soil data; spatial resolution; yield distribution; aggregation; us great-plains; climate-change; integrated assessment; simulating wheat; yields; scale; productivity; uncertainty; variability; responses  
  Abstract • Systematic analysis of the influence of spatial soil data resolution on simulated regional yields and total growing season evapotranspiration. • The responses of four crop models of different complexity are compared. • Differences between models are larger than the effect of the chosen spatial soil data resolution. • Low influence of soil data resolution due to: high precipitation amount, methods for calculating water retention and method of data aggregation. The spatial variability of soil properties is an important driver of yield variability at both field and regional scale. Thus, when using crop growth simulation models, the choice of spatial resolution of soil input data might be key in order to accurately reproduce observed yield variability. In this study we used four crop models (SIMPLACE<LINTUL-SLIM>, DSSAT-CSM, EPIC and DAISY) differing in the detail of modeling above-ground biomass and yield as well as of modeling soil water dynamics, water uptake and drought effects on plants to simulate winter wheat in two (agro-climatologically and geo-morphologically) contrasting regions of the federal state of North-Rhine-Westphalia (Germany) for the period from 1995 to 2008. Three spatial resolutions of soil input data were taken into consideration, corresponding to the following map scales: 1:50 000, 1:300 000 and 1:1 000 000. The four crop models were run for water-limited production conditions and model results were evaluated in the form of frequency distributions, depicted by bean-plots. In both regions, soil data aggregation had very small influence on the shape and range of frequency distributions of simulated yield and simulated total growing season evapotranspiration for all models. Further analysis revealed that the small influence of spatial resolution of soil input data might be related to: (a) the high precipitation amount in the region which partly masked differences in soil characteristics for water holding capacity, (b) the loss of variability in hydraulic soil properties due to the methods applied to calculate water retention properties of the used soil profiles, and (c) the method of soil data aggregation. No characteristic “fingerprint” between sites, years and resolutions could be found for any of the models. Our results support earlier recommendation to evaluate model results on the basis of frequency distributions since these offer quick and better insight into the distribution of simulation results as compared to summary statistics only. Finally, our results support conclusions from other studies about the usefulness of considering a multi-model approach to quantify the uncertainty in simulated yields introduced by the crop growth simulation approach when exploring the effects of scaling for regional yield impact assessments.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1161-0301 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4511  
Permanent link to this record
 

 
Author Schils, R. url  openurl
  Title (down) Yield gaps of cereals across Europe Type Report
  Year 2017 Publication FACCE MACSUR Reports Abbreviated Journal  
  Volume 10 Issue Pages Xc9.1-D1  
  Keywords  
  Abstract The increasing global demand for food requires a sustainable intensification of crop production in low-yielding areas. Actions to improve crop production in these regions call for accurate spatially explicit identification of yield gaps, i.e. the difference between potential or water-limited yield and actual yield. The Global Yield Gap Atlas (GYGA) project proposes a consistent bottom-up approach to estimate yield gaps. For each country, a climate zonation is overlaid with a crop area map. Within climate zones with important crop areas, weather stations are selected with at least 10 years of daily data. For each of the 3 dominant soil types within a 100 km zone around the weather stations, the potential and water-limited yields are simulated with the WOFOST crop model, using location-specific knowledge on crop systems. Data from variety trials or other experiments, approaching potential or water-limited yields, are used for validation and calibration of the model. Actual yields are taken from sub-national statistics. Yields and yield gaps are scaled up to climate zones and subsequently to countries. The average national simulated wheat yields under rainfed conditions varied from around 5 to 6 t/ha/year in the Mediterranean to nearly 12 t/ha/year on the British Isles and in the Low Countries. The average actual wheat yield varied from around 2 to 3 t/ha/year in the Mediterranean and some countries in East Europe to nearly 9 t/ha/year on the British Isles and in the Low Countries. The average relative yield gaps varied from around 10% to 30% in many countries in Northwest Europe to around 50% to 70% in some countries in the Mediterranean and East Europe. The paper will elaborate on results per climate zone and soil type, and will also include barley and maize. Furthermore we will relate yield gaps to nitrogen use.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes XC, CropM Approved no  
  Call Number MA @ admin @ Serial 4960  
Permanent link to this record
 

 
Author Rötter, R.P.; Höhn, J.K.; Palosuo, T.; Kassie, B.T.; Paff, K.; Tao, F.; Chen, Y.; Asseng, S.; et al. openurl 
  Title (down) Yield gap and variability analysis for different aro-technologies for maize and wheat (YGV study) Type Conference Article
  Year 2015 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords CropM;  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Ithaca (U.S.A.) Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference 2nd Global Food Security Conference, 2015-10-10- to 2015-10-15, Ithaca  
  Notes Approved no  
  Call Number MA @ admin @ Serial 2770  
Permanent link to this record
 

 
Author Schils, R.; Kersebaum, K.C.; Nieróbca, A.; Zylowska, K.; Boogaard, H.; De Groot, H.; Van Bussel, L.; Wolf, J.; Van Ittersum, M. url  openurl
  Title (down) Yield gap analysis of cereals in Europe supported by local knowledge Type Conference Article
  Year 2014 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords CropM  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference MACSUR CropM International Symposium and Workshop: Modelling climate change impacts on crop production for food security, Oslo, Norway, 2014-02-10 to 2014-02-12  
  Notes Approved no  
  Call Number MA @ admin @ Serial 2799  
Permanent link to this record
 

 
Author Schils, R. url  openurl
  Title (down) Yield gap analysis of cereals in Europe supported by local knowledge Type
  Year 2015 Publication FACCE MACSUR Reports Abbreviated Journal  
  Volume 5 Issue Pages Sp5-57  
  Keywords  
  Abstract The increasing demand for food requires a sustainable intensification of crop production in underperforming areas. Many global and local studies have addressed yield gaps, i.e. the difference between potential or water-limited yields and actual yields. Global studies generally rely on generic models combined with a grid-based approach. Although using a consistent method, it has been shown they are not suitable for local yield gap assessment. Local studies generally exploit knowledge of location-specific conditions and management, but are less comparable across locations due to different methods. To overcome these inconsistencies, the Global Yield Gap Atlas (GYGA, www.yieldgap.org) proposes a consistent bottom-up approach to estimate yield gaps. This paper outlines the implementation of GYGA for estimating yield gaps of cereals across Europe. For each country, climate zones are identified which represent the major growing areas. Within these climate zones, weather stations are selected with >=15 years of daily data. For dominant soil types within a buffer zone around the weather stations, the potential and water-limited yields are simulated with a crop model, using local knowledge on management. Actual yields are derived from sub-national statistics. Yield gaps are scaled up from buffer zones to climate zones and countries. We will present the first results for selected regions in Europe, and discuss methodological issues on location specific weather and upscaling from weather station buffer zones to climate zones and countries. Furthermore we will look ahead at the implementation of the yield gap cross cutting activity (XC9) in MACSUR-2. No Label  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference MACSUR Science Conference 2015 »Integrated Climate Risk Assessment in Agriculture & Food«, 8–9+10 April 2015, Reading, UK  
  Notes Approved no  
  Call Number MA @ admin @ Serial 2172  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: