toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Record Links
Author (up) Schils, R. url  openurl
  Title Yield gaps of cereals across Europe Type Report
  Year 2017 Publication FACCE MACSUR Reports Abbreviated Journal  
  Volume 10 Issue Pages Xc9.1-D1  
  Keywords  
  Abstract The increasing global demand for food requires a sustainable intensification of crop production in low-yielding areas. Actions to improve crop production in these regions call for accurate spatially explicit identification of yield gaps, i.e. the difference between potential or water-limited yield and actual yield. The Global Yield Gap Atlas (GYGA) project proposes a consistent bottom-up approach to estimate yield gaps. For each country, a climate zonation is overlaid with a crop area map. Within climate zones with important crop areas, weather stations are selected with at least 10 years of daily data. For each of the 3 dominant soil types within a 100 km zone around the weather stations, the potential and water-limited yields are simulated with the WOFOST crop model, using location-specific knowledge on crop systems. Data from variety trials or other experiments, approaching potential or water-limited yields, are used for validation and calibration of the model. Actual yields are taken from sub-national statistics. Yields and yield gaps are scaled up to climate zones and subsequently to countries. The average national simulated wheat yields under rainfed conditions varied from around 5 to 6 t/ha/year in the Mediterranean to nearly 12 t/ha/year on the British Isles and in the Low Countries. The average actual wheat yield varied from around 2 to 3 t/ha/year in the Mediterranean and some countries in East Europe to nearly 9 t/ha/year on the British Isles and in the Low Countries. The average relative yield gaps varied from around 10% to 30% in many countries in Northwest Europe to around 50% to 70% in some countries in the Mediterranean and East Europe. The paper will elaborate on results per climate zone and soil type, and will also include barley and maize. Furthermore we will relate yield gaps to nitrogen use.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes XC, CropM Approved no  
  Call Number MA @ admin @ Serial 4960  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: