toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Kässi, P.; Känkänen, H.; Niskanen, O.; Lehtonen, H.; Höglind, M. url  doi
openurl 
  Title Farm level approach to manage grass yield variation under climate change in Finland and north-western Russia Type Journal Article
  Year 2015 Publication Biosystems Engineering Abbreviated Journal Biosystems Engineering  
  Volume 140 Issue Pages 11-22  
  Keywords silage grass; risk management; dairy farms; buffer storage; agricultural economics; grassland modelling; dairy-cows; impact; security; timothy; harvest; future; growth; norway; europe; time  
  Abstract Cattle feeding in Northern Europe is based on grass silage, but grass growth is highly dependent on weather conditions. If ensuring sufficient silage availability in every situation is prioritised, the lowest expected yield level determines the cultivated area in farmers’ decision-making. One way to manage the variation in grass yield is to increase grass production and silage storage capacity so that they exceed the annual consumption at the farm. The cost of risk management in the current and the projected future climate was calculated taking into account grassland yield and yield variability for three study areas under current and mid-21st century climate conditions. The dataset on simulated future grass yields used as input for the risk management calculations were taken from a previously published simulation study. Strategies investigated included using up to 60% more silage grass area than needed in a year with average grass yields, and storing silage for up to 6 months more than consumed in a year (buffer storage). According to the results, utilising an excess silage grass area of 20% and a silage buffer storage capacity of 6 months were the most economic ways of managing drought risk in both the baseline climate and the projected climate of 2046-2065. It was found that the silage yield risk due to drought is likely to decrease in all studied locations, but the drought risk and costs implied still remain significant. (C) 2015 IAgrE. Published by Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1537-5110 ISBN Medium Article  
  Area Expedition Conference  
  Notes (up) TradeM Approved no  
  Call Number MA @ admin @ Serial 4671  
Permanent link to this record
 

 
Author Zimmermann, A.; Britz, W. url  doi
openurl 
  Title European farms’ participation in agri-environmental measures Type Journal Article
  Year 2016 Publication Land Use Policy Abbreviated Journal Land Use Policy  
  Volume 50 Issue Pages 214-228  
  Keywords agri-environmental; CAP; farm; EU; estimation; protection scheme; conservation; programs; willingness; policy; perspective; adoption; ireland  
  Abstract Due to their diversity and voluntariness, agri-environmental measures (AEMs) are among the Common Agricultural Policy instruments that are most difficult to assess. We provide an EU-wide analysis of AEM adoption and farm’s total AEM support over total Utilised Agricultural Area using a Heckman sample selection approach and single farm data. Our analysis covers 22 Member States over the 2000-2009 period, assesses the entire portfolio of AEMs and focuses on the relationship between AEM participation and farming system. Results show that participation in AEMs is more likely in less intensive production systems, where, however, per committed hectare AEM premiums tend to be lower. Member States group into three categories: high/low intensity farming systems with low/high AEM enrollment rates, respectively, and large high diversity countries with medium AEM enrollment rates. (C) 2015 Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0264-8377 ISBN Medium Article  
  Area Expedition Conference  
  Notes (up) TradeM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4711  
Permanent link to this record
 

 
Author Lehtonen, H.; Palosuo, T.; Korhonen, P.; Liu, X. url  doi
openurl 
  Title Higher Crop Yield Levels in the North Savo Region—Means and Challenges Indicated by Farmers and Their Close Stakeholders Type Journal Article
  Year 2018 Publication Agriculture Abbreviated Journal Agriculture  
  Volume 8 Issue 7 Pages 93  
  Keywords northern Europe; forage grasslands; spring cereals; drainage; soil conidtions; farm management; agricultural policy  
  Abstract The sustainable intensification of farming systems is expected to increase food supply and reduce the negative environmental effects of agriculture. It is also seen as an effective adaptation and mitigation strategy in response to climate change. Our aim is to determine farmers’ and other stakeholders’ views on how higher crop yields can be achieved from their currently low levels. This was investigated in two stakeholder workshops arranged in North Savo, Finland, in 2014 and 2016. The workshop participants, who were organized in discussion groups, considered some agricultural policies to discourage the improvement of crop yields. Policy schemes were seen to support extensification and reduce the motivation for yield improvements. However, the most important means for higher crop yields indicated by workshop participants were improved soil conditions with drainage and liming, in addition to improved crop rotations, better sowing techniques, careful selection of cultivars and forage grass mixtures. Suggested solutions for improving both crop yields and farm income also included optimized use of inputs, focusing production at the most productive fields and actively developed farming skills and knowledge sharing. These latter aspects were more pronounced in 2016, suggesting that farmers’ skills are increasingly being perceived as important.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2077-0472 ISBN Medium  
  Area Expedition Conference  
  Notes (up) TradeM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 5203  
Permanent link to this record
 

 
Author Mitter, H.; Schoenhart, M.; Larcher, M.; Schmid, E. doi  openurl
  Title The Stimuli-Actions-Effects-Responses (SAER)-framework for exploring perceived relationships between private and public climate change adaptation in agriculture Type Journal Article
  Year 2018 Publication Journal of Environmental Management Abbreviated Journal J. Environ. Manage.  
  Volume 209 Issue Pages 286-300  
  Keywords Climate change perception; Private adaptation, Public adaptation; Qualitative analysis; Adaptation stimulus; Adaptation effect; Transformational Adaptation; Adapting Agriculture; Farmers Perceptions; Change Scenarios; Decision-Making; Change Impacts; Land-Use; Vulnerability; Framework; Science  
  Abstract Empirical findings on actors’ roles and responsibilities in the climate change adaptation process are rare even though cooperation between private and public actors is perceived important to foster adaptation in agriculture. We therefore developed the framework SAER (Stimuli-Actions-Effects-Responses) to investigate perceived relationships between private and public climate change adaptation in agriculture at regional scale. In particular, we explore agricultural experts’ perceptions on (i) climatic and non climatic factors stimulating private adaptation, (ii) farm adaption actions, (iii) potential on-farm and off-farm effects from adaptation, and (iv) the relationships between private and public adaptation. The SAER-framework is built on a comprehensive literature review and empirical findings from semi structured interviews with agricultural experts from two case study regions in Austria. We find that private adaptation is perceived as incremental, systemic or transformational. It is typically stimulated by a mix of bio-physical and socio-economic on-farm and off-farm factors. Stimulating factors related to climate change are perceived of highest relevance for systemic and transformational adaptation whereas already implemented adaptation is mostly perceived to be incremental. Perceived effects of private adaptation are related to the environment, weather and climate, quality and quantity of agricultural products as well as human, social and economic resources. Our results also show that public adaptation can influence factors stimulating private adaptation as well as adaptation effects through the design and development of the legal, policy and organizational environment as well as the provision of educational, informational, financial, and technical infrastructure. Hence, facilitating existing and new collaborations between private and public actors may enable farmers to adapt effectively to climate change. (C) 2018 Elsevier Ltd. All rights reserved.  
  Address 2018-03-02  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0301-4797 ISBN Medium Article  
  Area Expedition Conference  
  Notes (up) TradeM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 5192  
Permanent link to this record
 

 
Author Hutchings, N.J.; Özkan Gülzari, Ş.; de Haan, M.; Sandars, D. doi  openurl
  Title How do farm models compare when estimating greenhouse gas emissions from dairy cattle production Type Journal Article
  Year 2018 Publication Animal Abbreviated Journal Animal  
  Volume 12 Issue 10 Pages 2171-2180  
  Keywords dairy cattle; farm-scale; model; greenhouse gas; Future Climate Scenarios; Systems-Analysis; Milk-Production; Crop; Production; Mitigation; Intensity; Impacts  
  Abstract The European Union Effort Sharing Regulation (ESR) will require a 30% reduction in greenhouse gas (GHG) emissions by 2030 compared with 2005 from the sectors not included in the European Emissions Trading Scheme, including agriculture. This will require the estimation of current and future emissions from agriculture, including dairy cattle production systems. Using a farm-scale model as part of a Tier 3 method for farm to national scales provides a more holistic and informative approach than IPCC (2006) Tier 2 but requires independent quality control. Comparing the results of using models to simulate a range of scenarios that explore an appropriate range of biophysical and management situations can support this process by providing a framework for placing model results in context. To assess the variation between models and the process of understanding differences, estimates of GHG emissions from four farm-scale models (DailyWise, FarmAC, HolosNor and SFARMMOD) were calculated for eight dairy farming scenarios within a factorial design consisting of two climates (cool/dry and warm/wet) x two soil types (sandy and clayey) x two feeding systems (grass only and grass/maize). The milk yield per cow, follower cow ratio, manure management system, nitrogen (N) fertilisation and land area were standardised for all scenarios in order to associate the differences in the results with the model structure and function. Potential yield and application of available N in fertiliser and manure were specified separately for grass and maize. Significant differences between models were found in GHG emissions at the farm-scale and for most contributory sources, although there was no difference in the ranking of source magnitudes. The farm-scale GHG emissions, averaged over the four models, was 10.6 t carbon dioxide equivalents (CO(2)e)/ha per year, with a range of 1.9 t CO(2)e/ha per year. Even though key production characteristics were specified in the scenarios, there were still significant differences between models in the annual milk production per ha and the amounts of N fertiliser and concentrate feed imported. This was because the models differed in their description of biophysical responses and feedback mechanisms, and in the extent to which management functions were internalised. We conclude that comparing the results of different farm-scale models when applied to a range of scenarios would build confidence in their use in achieving ESR targets, justifying further investment in the development of a wider range of scenarios and software tools.  
  Address 2019-01-07  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1751-7311 ISBN Medium  
  Area Expedition Conference  
  Notes (up) TradeM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 5212  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: