toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Robinson, S.; van Meijl, H.; Willenbockel, D.; Valin, H.; Fujimori, S.; Masui, T.; Sands, R.; Wise, M.; Calvin, K.; Havlik, P.; Mason d’Croz, D.; Tabeau, A.; Kavallari, A.; Schmitz, C.; Dietrich, J.P.; von Lampe, M. url  doi
openurl 
  Title Comparing supply-side specifications in models of global agriculture and the food system Type Journal Article
  Year 2014 Publication Agricultural Economics Abbreviated Journal Agric. Econ.  
  Volume 45 Issue (up) 1 Pages 21-35  
  Keywords global agricultural models; global food system scenario analysis; general equilibrium; partial equilibrium; growth; trade  
  Abstract This article compares the theoretical and functional specification of production in partial equilibrium (PE) and computable general equilibrium (CGE) models of the global agricultural and food system included in the AgMIP model comparison study. The two model families differ in their scopepartial versus economy-wideand in how they represent technology and the behavior of supply and demand in markets. The CGE models are deep structural models in that they explicitly solve the maximization problem of consumers and producers, assuming utility maximization and profit maximization with production/cost functions that include all factor inputs. The PE models divide into two groups on the supply side: (1) shallow structural models, which essentially specify area/yield supply functions with no explicit maximization behavior, and (2) deep structural models that provide a detailed activity-analysis specification of technology and explicit optimizing behavior by producers. While the models vary in their specifications of technology, both within and between the PE and CGE families, we consider two stylized theoretical models to compare the behavior of crop yields and supply functions in CGE models with their behavior in shallow structural PE models. We find that the theoretical responsiveness of supply to changes in prices can be similar, depending on parameter choices that define the behavior of implicit supply functions over the domain of applicability defined by the common scenarios used in the AgMIP comparisons. In practice, however, the applied models are more complex and differ in their empirical sensitivity to variations in specificationcomparability of results given parameter choices is an empirical question. To illustrate the issues, sensitivity analysis is done with one global CGE model, MAGNET, to indicate how the results vary with different specification of technical change, and how they compare with the results from PE models.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0169-5150 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, TradeM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4735  
Permanent link to this record
 

 
Author Rusu, T.; Moraru, P.; Coste, C.; Cacovean, H.; Chetan, F.; Chetan, C. url  openurl
  Title Impact of climate change on climatic indicators in Transylvanian Plain, Romania Type Journal Article
  Year 2014 Publication Journal of Food, Agriculture and Environment Abbreviated Journal Journal of Food, Agriculture and Environment  
  Volume 12 Issue (up) 1 Pages 469-473  
  Keywords Climate change; climatic indicators; Transylvanian plain  
  Abstract The condition of land degradation in Transylvanian Plain and its effects, being the result of local extreme physical-geographical conditions, is susceptible to degradation (evidenced by the erodibility index), which overlaps the extreme climatic conditions. Thermal and hydric regime monitoring is necessary in order to identify and implement measures of adaptation to the impacts of climate change. Soil moisture and temperature regimes were evaluated using a set of 20 data logging stations positioned throughout the plain. Each station stores electronic data of ground temperature at 3 depths (10, 30, 50 cm), the humidity at the depth of 10 cm, the air temperature (at 1 m) and precipitations. Climate change in the past few years has significantly altered the climatic indicators of the Transylvanian Plain. Precipitations, although deficient in terms of annual amounts, through their regime, have a negative influence on the plant carpet. Pluvial aggressiveness index reveals, for the research period, a first peak of pluvial aggressiveness during the months of February-April, then in July and in autumn, the months of October-November. This requires special measures for soil conservation, both in autumn and early spring, soil tillage measures being recommended, which ensure the presence of plant debris and vegetation in early spring but especially in summer and autumn. Climatic indicators determined for the period 2008 – 2012 point out, in Transylvanian Plain, a semi-arid Mediterranean climate through the rain factor Lang, respectively semi-arid (in the South) – semi-wet (in the North) according to the De Martonne index. This climatic characterization requires special technological measures for soil conservation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ftnotmacsur Approved no  
  Call Number MA @ admin @ Serial 4638  
Permanent link to this record
 

 
Author Porter, J.R.; Dyball, R.; Dumaresq, D.; Deutsch, L.; Matsuda, H. url  doi
openurl 
  Title Feeding capitals: Urban food security and self-provisioning in Canberra, Copenhagen and Tokyo Type Journal Article
  Year 2014 Publication Global Food Security Abbreviated Journal Global Food Security  
  Volume 3 Issue (up) 1 Pages 1-7  
  Keywords cities; food security; self-provisioning; provisioning ecosystems  
  Abstract Most people live in cities, but most food system studies and food security issues focus on the rural poor. Urban populations differ from rural populations in their food consumption by being generally wealthier, requiring food trade for their food security, defined as the extent to which people have adequate diets. Cities rarely have the self-provisioning capacity to satisfy their own food supply, understood as the extent to which the food consumed by the city’s population is produced from the city’s local agro-ecosystems. Almost inevitably, a city’s food security is augmented by production from remote landscapes, both internal and external in terms of a state’s jurisdiction. We reveal the internal and external food flows necessary for the food security of three wealthy capital cities (Canberra, Australia; Copenhagen, Denmark; Tokyo, Japan). These cities cover two orders of magnitude in population size and three orders of magnitude in population density. From traded volumes of food and their sources into the cities, we calculate the productivity of the city’s regional and non-regional ecosystems that provide food for these cities and estimate the overall utilised land area. The three cities exhibit differing degrees of food self provisioning capacity and exhibit large differences in the areas on which they depend to provide their food. We show that, since 1965, global land area effectively imported to produce food for these cities has increased with their expanding populations, with large reductions in the percentage of demand met by local agro-ecosystems. The physical trading of food commodities embodies ecosystem services, such as water, soil fertility and pollination that are required for land-based food production. This means that the trade in these embodied ecosystem services has become as important for food security as traditional economic mechanisms such as market access and trade. A future policy question, raised by our study, is the degree to which governments will remain committed to open food trade policies in the face of national political unrest caused by food shortages. Our study demonstrates the need to determine the food security and self-provisioning capacity of a wide range of rich and poor cities, taking into account the global location of the ecosystems that are provisioning them. (C) 2013 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2211-9124 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ftnotmacsur Approved no  
  Call Number MA @ admin @ Serial 4636  
Permanent link to this record
 

 
Author Bernabucci, U.; Biffani, S.; Buggiotti, L.; Vitali, A.; Lacetera, N.; Nardone, A. doi  openurl
  Title The effects of heat stress in Italian Holstein dairy cattle Type Journal Article
  Year 2014 Publication Journal of Dairy Science Abbreviated Journal J. Dairy Sci.  
  Volume 97 Issue (up) 1 Pages 471-486  
  Keywords Animals; Breeding; Cattle; Dietary Fats/analysis; Dietary Proteins/analysis; Female; Genetic Variation; Heat Stress Disorders/*veterinary; *Hot Temperature; Humans; Humidity; *Lactation; Linear Models; Milk/chemistry; Parity; Phenotype; Weather; dairy cow; heritability; production trait; temperature-humidity index breaking point  
  Abstract The data set for this study comprised 1,488,474 test-day records for milk, fat, and protein yields and fat and protein percentages from 191,012 first-, second-, and third-parity Holstein cows from 484 farms. Data were collected from 2001 through 2007 and merged with meteorological data from 35 weather stations. A linear model (M1) was used to estimate the effects of the temperature-humidity index (THI) on production traits. Least squares means from M1 were used to detect the THI thresholds for milk production in all parities by using a 2-phase linear regression procedure (M2). A multiple-trait repeatability test-model (M3) was used to estimate variance components for all traits and a dummy regression variable (t) was defined to estimate the production decline caused by heat stress. Additionally, the estimated variance components and M3 were used to estimate traditional and heat-tolerance breeding values (estimated breeding values, EBV) for milk yield and protein percentages at parity 1. An analysis of data (M2) indicated that the daily THI at which milk production started to decline for the 3 parities and traits ranged from 65 to 76. These THI values can be achieved with different temperature/humidity combinations with a range of temperatures from 21 to 36°C and relative humidity values from 5 to 95%. The highest negative effect of THI was observed 4 d before test day over the 3 parities for all traits. The negative effect of THI on production traits indicates that first-parity cows are less sensitive to heat stress than multiparous cows. Over the parities, the general additive genetic variance decreased for protein content and increased for milk yield and fat and protein yield. Additive genetic variance for heat tolerance showed an increase from the first to third parity for milk, protein, and fat yield, and for protein percentage. Genetic correlations between general and heat stress effects were all unfavorable (from -0.24 to -0.56). Three EBV per trait were calculated for each cow and bull (traditional EBV, traditional EBV estimated with the inclusion of THI covariate effect, and heat tolerance EBV) and the rankings of EBV for 283 bulls born after 1985 with at least 50 daughters were compared. When THI was included in the model, the ranking for 17 and 32 bulls changed for milk yield and protein percentage, respectively. The heat tolerance genetic component is not negligible, suggesting that heat tolerance selection should be included in the selection objectives.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1525-3198 (Electronic) 0022-0302 (Linking) ISBN Medium Article  
  Area Expedition Conference  
  Notes LiveM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4617  
Permanent link to this record
 

 
Author Nelson, G.C.; van der Mensbrugghe, D.; Ahammad, H.; Blanc, E.; Calvin, K.; Hasegawa, T.; Havlik, P.; Heyhoe, E.; Kyle, P.; Lotze-Campen, H.; von Lampe, M.; Mason, d’C., Daniel; van Meijl, H.; Müller, C.; Reilly, J.; Robertson, R.; Sands, R.D.; Schmitz, C.; Tabeau, A.; Takahashi, K.; Valin, H.; Willenbockel, D. url  doi
openurl 
  Title Agriculture and climate change in global scenarios: why don’t the models agree Type Journal Article
  Year 2014 Publication Agricultural Economics Abbreviated Journal Agric. Econ.  
  Volume 45 Issue (up) 1 Pages 85-101  
  Keywords climate change impacts; economic models of agriculture; scenarios; system model; demand; CMIP5  
  Abstract Agriculture is unique among economic sectors in the nature of impacts from climate change. The production activity that transforms inputs into agricultural outputs involves direct use of weather inputs (temperature, solar radiation available to the plant, and precipitation). Previous studies of the impacts of climate change on agriculture have reported substantial differences in outcomes such as prices, production, and trade arising from differences in model inputs and model specification. This article presents climate change results and underlying determinants from a model comparison exercise with 10 of the leading global economic models that include significant representation of agriculture. By harmonizing key drivers that include climate change effects, differences in model outcomes were reduced. The particular choice of climate change drivers for this comparison activity results in large and negative productivity effects. All models respond with higher prices. Producer behavior differs by model with some emphasizing area response and others yield response. Demand response is least important. The differences reflect both differences in model specification and perspectives on the future. The results from this study highlight the need to more fully compare the deep model parameters, to generate a call for a combination of econometric and validation studies to narrow the degree of uncertainty and variability in these parameters and to move to Monte Carlo type simulations to better map the contours of economic uncertainty.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0169-5150 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, TradeM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4536  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: