toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Mansouri, M.; Dumont, B.; Leemans, V.; Destain, M.-F. url  doi
openurl 
  Title Bayesian methods for predicting LAI and soil water content Type Journal Article
  Year 2014 Publication Precision Agriculture Abbreviated Journal Precision Agric.  
  Volume 15 Issue 2 Pages 184-201  
  Keywords crop model; bayes; data assimilation; extended kalman filtering; particle filtering; variational filtering; leaf-area index; parameter-estimation; crop models; moisture; instruments; management; sensors; state  
  Abstract LAI of winter wheat (Triticum aestivum L.) and soil water content of the topsoil (200 mm) and of the subsoil (500 mm) were considered as state variables of a dynamic soil-crop system. This system was assumed to progress according to a Bayesian probabilistic state space model, in which real values of LAI and soil water content were daily introduced in order to correct the model trajectory and reach better future evolution. The chosen crop model was mini STICS which can reduce the computing and execution times while ensuring the robustness of data processing and estimation. To predict simultaneously state variables and model parameters in this non-linear environment, three techniques were used: extended Kalman filtering (EKF), particle filtering (PF), and variational filtering (VF). The significantly improved performance of the VF method when compared to EKF and PF is demonstrated. The variational filter has a low computational complexity and the convergence speed of states and parameters estimation can be adjusted independently. Detailed case studies demonstrated that the root mean square error of the three estimated states (LAI and soil water content of two soil layers) was smaller and that the convergence of all considered parameters was ensured when using VF. Assimilating measurements in a crop model allows accurate prediction of LAI and soil water content at a local scale. As these biophysical properties are key parameters in the crop-plant system characterization, the system has the potential to be used in precision farming to aid farmers and decision makers in developing strategies for site-specific management of inputs, such as fertilizers and water irrigation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1385-2256 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ftnotmacsur Approved no  
  Call Number MA @ admin @ Serial 4629  
Permanent link to this record
 

 
Author Martre, P.; He, J.; Le Gouis, J.; Semenov, M.A. doi  openurl
  Title In silico system analysis of physiological traits determining grain yield and protein concentration for wheat as influenced by climate and crop management Type Journal Article
  Year 2015 Publication Journal of Experimental Botany Abbreviated Journal J. Experim. Bot.  
  Volume 66 Issue 12 Pages 3581-3598  
  Keywords Climate; *Computer Simulation; Crops, Agricultural/*growth & development/physiology; Edible Grain/*growth & development; Models, Biological; Nitrogen/metabolism; Plant Proteins/*metabolism; Plant Transpiration; Probability; *Quantitative Trait, Heritable; Soil/chemistry; Triticum/growth & development/metabolism/*physiology; Water/chemistry; Crop growth model; genetic adaptation; grain protein concentration; grain yield; interannual variability; sensitivity analysis; wheat (Triticum aestivum L.); yield stability  
  Abstract Genetic improvement of grain yield (GY) and grain protein concentration (GPC) is impeded by large genotype×environment×management interactions and by compensatory effects between traits. Here global uncertainty and sensitivity analyses of the process-based wheat model SiriusQuality2 were conducted with the aim of identifying candidate traits to increase GY and GPC. Three contrasted European sites were selected and simulations were performed using long-term weather data and two nitrogen (N) treatments in order to quantify the effect of parameter uncertainty on GY and GPC under variable environments. The overall influence of all 75 plant parameters of SiriusQuality2 was first analysed using the Morris method. Forty-one influential parameters were identified and their individual (first-order) and total effects on the model outputs were investigated using the extended Fourier amplitude sensitivity test. The overall effect of the parameters was dominated by their interactions with other parameters. Under high N supply, a few influential parameters with respect to GY were identified (e.g. radiation use efficiency, potential duration of grain filling, and phyllochron). However, under low N, >10 parameters showed similar effects on GY and GPC. All parameters had opposite effects on GY and GPC, but leaf and stem N storage capacity appeared as good candidate traits to change the intercept of the negative relationship between GY and GPC. This study provides a system analysis of traits determining GY and GPC under variable environments and delivers valuable information to prioritize model development and experimental work.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1460-2431 (Electronic) 0022-0957 (Linking) ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ftnotmacsur Approved no  
  Call Number MA @ admin @ Serial 4567  
Permanent link to this record
 

 
Author Bernabucci, U.; Biffani, S.; Buggiotti, L.; Vitali, A.; Lacetera, N.; Nardone, A. doi  openurl
  Title The effects of heat stress in Italian Holstein dairy cattle Type Journal Article
  Year 2014 Publication Journal of Dairy Science Abbreviated Journal J. Dairy Sci.  
  Volume 97 Issue 1 Pages 471-486  
  Keywords Animals; Breeding; Cattle; Dietary Fats/analysis; Dietary Proteins/analysis; Female; Genetic Variation; Heat Stress Disorders/*veterinary; *Hot Temperature; Humans; Humidity; *Lactation; Linear Models; Milk/chemistry; Parity; Phenotype; Weather; dairy cow; heritability; production trait; temperature-humidity index breaking point  
  Abstract The data set for this study comprised 1,488,474 test-day records for milk, fat, and protein yields and fat and protein percentages from 191,012 first-, second-, and third-parity Holstein cows from 484 farms. Data were collected from 2001 through 2007 and merged with meteorological data from 35 weather stations. A linear model (M1) was used to estimate the effects of the temperature-humidity index (THI) on production traits. Least squares means from M1 were used to detect the THI thresholds for milk production in all parities by using a 2-phase linear regression procedure (M2). A multiple-trait repeatability test-model (M3) was used to estimate variance components for all traits and a dummy regression variable (t) was defined to estimate the production decline caused by heat stress. Additionally, the estimated variance components and M3 were used to estimate traditional and heat-tolerance breeding values (estimated breeding values, EBV) for milk yield and protein percentages at parity 1. An analysis of data (M2) indicated that the daily THI at which milk production started to decline for the 3 parities and traits ranged from 65 to 76. These THI values can be achieved with different temperature/humidity combinations with a range of temperatures from 21 to 36°C and relative humidity values from 5 to 95%. The highest negative effect of THI was observed 4 d before test day over the 3 parities for all traits. The negative effect of THI on production traits indicates that first-parity cows are less sensitive to heat stress than multiparous cows. Over the parities, the general additive genetic variance decreased for protein content and increased for milk yield and fat and protein yield. Additive genetic variance for heat tolerance showed an increase from the first to third parity for milk, protein, and fat yield, and for protein percentage. Genetic correlations between general and heat stress effects were all unfavorable (from -0.24 to -0.56). Three EBV per trait were calculated for each cow and bull (traditional EBV, traditional EBV estimated with the inclusion of THI covariate effect, and heat tolerance EBV) and the rankings of EBV for 283 bulls born after 1985 with at least 50 daughters were compared. When THI was included in the model, the ranking for 17 and 32 bulls changed for milk yield and protein percentage, respectively. The heat tolerance genetic component is not negligible, suggesting that heat tolerance selection should be included in the selection objectives.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1525-3198 (Electronic) 0022-0302 (Linking) ISBN Medium Article  
  Area Expedition Conference  
  Notes LiveM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4617  
Permanent link to this record
 

 
Author Ben Touhami, H.; Bellocchi, G. url  doi
openurl 
  Title Bayesian calibration of the Pasture Simulation model (PaSim) to simulate European grasslands under water stress Type Journal Article
  Year 2015 Publication Ecological Informatics Abbreviated Journal Ecological Informatics  
  Volume 30 Issue Pages 356-364  
  Keywords Bayesian calibration framework; Grasslands; Pasture Simulation model; (PaSim); integrated assessment models; chain monte-carlo; climate-change; computation; impacts; vulnerability; likelihoods; france  
  Abstract As modeling becomes a more widespread practice in the agro-environmental sciences, scientists need reliable tools to calibrate models against ever more complex and detailed data. We present a generic Bayesian computation framework for grassland simulation, which enables parameter estimation in the Bayesian formalism by using Monte Carlo approaches. We outline the underlying rationale, discuss the computational issues, and provide results from an application of the Pasture Simulation model (PaSim) to three European grasslands. The framework was suited to investigate the challenging problem of calibrating complex biophysical models to data from altered scenarios generated by precipitation reduction (water stress conditions). It was used to infer the parameters of manipulated grassland systems and to assess the gain in uncertainty reduction by updating parameter distributions using measurements of the output variables.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1574-9541 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, LiveM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4697  
Permanent link to this record
 

 
Author Conradt, T.; Wechsung, F.; Bronstert, A. url  doi
openurl 
  Title Three perceptions of the evapotranspiration landscape: comparing spatial patterns from a distributed hydrological model, remotely sensed surface temperatures, and sub-basin water balances Type Journal Article
  Year 2013 Publication Hydrology and Earth System Sciences Abbreviated Journal Hydrol. Earth System Sci.  
  Volume 17 Issue 7 Pages 2947-2966  
  Keywords senegal river-basin; data assimilation; sensing data; regional evapotranspiration; intercomparison project; environmental-models; oklahoma experiments; solar-radiation; satellite data; scale  
  Abstract A problem encountered by many distributed hydrological modelling studies is high simulation errors at interior gauges when the model is only globally calibrated at the outlet. We simulated river runoff in the Elbe River basin in central Europe (148 268 km(2)) with the semi-distributed eco-hydrological model SWIM (Soil and Water Integrated Model). While global parameter optimisation led to Nash-Sutcliffe efficiencies of 0.9 at the main outlet gauge, comparisons with measured runoff series at interior points revealed large deviations. Therefore, we compared three different strategies for deriving sub-basin evapotranspiration: (1) modelled by SWIM without any spatial calibration, (2) derived from remotely sensed surface temperatures, and (3) calculated from long-term precipitation and discharge data. The results show certain consistencies between the modelled and the remote sensing based evapotranspiration rates, but there seems to be no correlation between remote sensing and water balance based estimations. Subsequent analyses for single sub-basins identify amongst others input weather data and systematic error amplification in inter-gauge discharge calculations as sources of uncertainty. The results encourage careful utilisation of different data sources for enhancements in distributed hydrological modelling.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1607-7938 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM Approved no  
  Call Number MA @ admin @ Serial 4485  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: