toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Perego, A.; Sanna, M.; Giussani, A.; Chiodini, M.E.; Fumagalli, M.; Pilu, S.R.; Bindi, M.; Moriondo, M.; Acutis, M. url  doi
openurl 
  Title Designing a high-yielding maize ideotype for a changing climate in Lombardy plain (northern Italy) Type Journal Article
  Year 2014 Publication Science of The Total Environment Abbreviated Journal Science of The Total Environment  
  Volume 499 Issue Pages (down) 497-509  
  Keywords Agriculture/*methods/standards; *Climate Change; Droughts; Italy; Nitrogen/analysis; Soil; Water Supply/statistics & numerical data; Zea mays/*growth & development/standards; Climate change; Crop model; Maize; Water use adaptation  
  Abstract The expected climate change will affect the maize yields in view of air temperature increase and scarce water availability. The application of biophysical models offers the chance to design a drought-resistant ideotype and to assist plant breeders and agronomists in the assessment of its suitability in future scenarios. The aim of the present work was to perform a model-based estimation of the yields of two hybrids, current vs ideotype, under future climate scenarios (2030-2060 and 2070-2100) in Lombardy (northern Italy), testing two options of irrigation (small amount at fixed dates vs optimal water supply), nitrogen (N) fertilization (300 vs 400 kg N ha(-1)), and crop cycle durations (current vs extended). For the designing of the ideotype we set several parameters of the ARMOSA process-based crop model: the root elongation rate and maximum depth, stomatal resistance, four stage-specific crop coefficients for the actual transpiration estimation, and drought tolerance factor. The work findings indicated that the current hybrid ensures good production only with high irrigation amount (245-565 mm y(-1)). With respect to the current hybrid, the ideotype will require less irrigation water (-13%, p<0.01) and it resulted in significantly higher yield under water stress condition (+15%, p<0.01) and optimal water supply (+2%, p<0.05). The elongated cycle has a positive effect on yield under any combination of options. Moreover, higher yields projected for the ideotype implicate more crop residues to be incorporated into the soil, which are positively correlated with the SOC sequestration and negatively with N leaching. The crop N uptake is expected to be adequate in view of higher rate of soil mineralization; the N fertilization rate of 400 kg N ha(-1) will involve significant increasing of grain yield, and it is expected to involve a higher rate of SOC sequestration.  
  Address 2016-10-31  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0048-9697 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM Approved no  
  Call Number MA @ admin @ Serial 4798  
Permanent link to this record
 

 
Author Perego, A.; Sanna, M.; Giussani, A.; Chiodini, M.E.; Fumagalli, M.; Pilu, S.R.; Bindi, M.; Moriondo, M.; Acutis, M. openurl 
  Title Designing a high-yielding maize ideotype for a changing climate in Lombardy plain northern Italy Type Journal Article
  Year 2014 Publication Science of the Total Environment Abbreviated Journal Science of the Total Environment  
  Volume 499 Issue Pages (down) 497-509  
  Keywords Agriculture/*methods/standards; *Climate Change; Droughts; Italy; Nitrogen/analysis; Soil; Water Supply/statistics & numerical data; Zea mays/*growth & development/standards; Climate change; Crop model; Maize; Water use adaptation  
  Abstract • ARMOSA model simulated a maize ideotype with drought adaptation under climate change. • The ideotype needs less water for higher yield compared to current hybrids. • Higher production involves more crop residues that enhance soil C sequestration. • Soil organic C may generally decrease and N leaching will increase in sandy soil. The expected climate change will affect the maize yields in view of air temperature increase and scarce water availability. The application of biophysical models offers the chance to design a drought-resistant ideotype and to assist plant breeders and agronomists in the assessment of its suitability in future scenarios. The aim of the present work was to perform a model-based estimation of the yields of two hybrids, current vs ideotype, under future climate scenarios (2030–2060 and 2070–2100) in Lombardy (northern Italy), testing two options of irrigation (small amount at fixed dates vs optimal water supply), nitrogen (N) fertilization (300 vs 400 kg N ha− 1), and crop cycle durations (current vs extended). For the designing of the ideotype we set several parameters of the ARMOSA process-based crop model: the root elongation rate and maximum depth, stomatal resistance, four stage-specific crop coefficients for the actual transpiration estimation, and drought tolerance factor. The work findings indicated that the current hybrid ensures good production only with high irrigation amount (245–565 mm y− 1). With respect to the current hybrid, the ideotype will require less irrigation water (− 13%, p < 0.01) and it resulted in significantly higher yield under water stress condition (+ 15%, p < 0.01) and optimal water supply (+ 2%, p < 0.05). The elongated cycle has a positive effect on yield under any combination of options. Moreover, higher yields projected for the ideotype implicate more crop residues to be incorporated into the soil, which are positively correlated with the SOC sequestration and negatively with N leaching. The crop N uptake is expected to be adequate in view of higher rate of soil mineralization; the N fertilization rate of 400 kg N ha− 1 will involve significant increasing of grain yield, and it is expected to involve a higher rate of SOC sequestration.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0048-9697 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM Approved no  
  Call Number MA @ admin @ Serial 4633  
Permanent link to this record
 

 
Author Sánchez, B.; Rasmussen, A.; Porter, J.R. doi  openurl
  Title Temperatures and the growth and development of maize and rice: a review Type Journal Article
  Year 2014 Publication Global Change Biology Abbreviated Journal Glob. Chang. Biol.  
  Volume 20 Issue 2 Pages (down) 408-417  
  Keywords Climate Change; Oryza/*growth & development; Temperature; Zea mays/*growth & development; cardinal temperatures; climatic change impacts; development; growth; lethal temperatures; maize; rice  
  Abstract Because of global land surface warming, extreme temperature events are expected to occur more often and more intensely, affecting the growth and development of the major cereal crops in several ways, thus affecting the production component of food security. In this study, we have identified rice and maize crop responses to temperature in different, but consistent, phenological phases and development stages. A literature review and data compilation of around 140 scientific articles have determined the key temperature thresholds and response to extreme temperature effects for rice and maize, complementing an earlier study on wheat. Lethal temperatures and cardinal temperatures, together with error estimates, have been identified for phenological phases and development stages. Following the methodology of previous work, we have collected and statistically analysed temperature thresholds of the three crops for the key physiological processes such as leaf initiation, shoot growth and root growth and for the most susceptible phenological phases such as sowing to emergence, anthesis and grain filling. Our summary shows that cardinal temperatures are conservative between studies and are seemingly well defined in all three crops. Anthesis and ripening are the most sensitive temperature stages in rice as well as in wheat and maize. We call for further experimental studies of the effects of transgressing threshold temperatures so such responses can be included into crop impact and adaptation models.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1354-1013 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ftnotmacsur, IPCC-AR5 Approved no  
  Call Number MA @ admin @ Serial 4693  
Permanent link to this record
 

 
Author Müller, C. doi  openurl
  Title African lessons on climate change risks for agriculture Type Journal Article
  Year 2013 Publication Annual Review of Nutrition Abbreviated Journal Ann. Rev. Nutr.  
  Volume 33 Issue 1 Pages (down) 395-411  
  Keywords Africa/epidemiology; *Climate Change/economics; Crops, Agricultural/economics/*growth & development; Diet/adverse effects/economics; Forecasting; *Global Health/economics/trends; Humans; Malnutrition/economics/epidemiology/prevention & control; *Models, Theoretical; Risk; Soil/chemistry; Water Resources/economics  
  Abstract Climate change impact assessments on agriculture are subject to large uncertainties, as demonstrated in the present review of recent studies for Africa. There are multiple reasons for differences in projections, including uncertainties in greenhouse gas emissions and patterns of climate change; assumptions on future management, aggregation, and spatial extent; and methodological differences. Still, all projections agree that climate change poses a significant risk to African agriculture. Most projections also see the possibility of increasing agricultural production under climate change, especially if suitable adaptation measures are assumed. Climate change is not the only projected pressure on African agriculture, which struggles to meet demand today and may need to feed an additional one billion individuals by 2050. Development strategies are urgently needed, but they will need to consider future climate change and its inherent uncertainties. Science needs to show how existing synergies between climate change adaptation and development can be exploited.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0199-9885 1545-4312 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM Approved no  
  Call Number MA @ admin @ Serial 4496  
Permanent link to this record
 

 
Author Lizaso, J.I.; Ruiz-Ramos, M.; Rodriguez, L.; Gabaldon-Leal, C.; Oliveira, J.A.; Lorite, I.J.; Rodriguez, A.; Maddonni, G.A.; Otegui, M.E. doi  openurl
  Title Modeling the response of maize phenology, kernel set, and yield components to heat stress and heat shock with CSM-IXIM Type Journal Article
  Year 2017 Publication Field Crops Research Abbreviated Journal Field Crops Research  
  Volume 214 Issue Pages (down) 239-252  
  Keywords Heat stress, Maize; CSM-IXIM; CSM-CERES-maize; Beta function; CERES-MAIZE; DEVELOPMENTAL PROCESSES; TEMPERATURE RESPONSES; CROSS-VALIDATION; GRAIN-SORGHUM; GROWTH; SIMULATION; PLANTS; SENESCENCE; NITROGEN  
  Abstract The available evidence suggests that the current increasing trend in global surface temperatures will continue during this century, which will be accompanied by a greater frequency of extreme events. The IPCC has projected that higher temperatures may outscore the known optimal and maximum temperatures for maize. The purpose of this study was to improve the ability of the maize model CSM-IXIM to simulate crop development, growth, and yield under hot conditions, especially with regards to the impact of above-optimal temperatures around anthesis. Field and greenhouse experiments that were performed over three years (2014-2016) using the same short-season hybrid, PR37N01 (FAO 300), provided the data for this work. Maize was sown at a target population density of 5 plants M-2 on two sowing dates in 2014 and 2015 and on one in 2016 at three locations in Spain (northern, central, and southern Spain) with a well-defined thermal gradient. The same hybrid was also sown in two greenhouse chambers with daytime target temperatures of approximately 25 and above 35 degrees C. During the nighttime, the temperature in both chambers was allowed to equilibrate with the outside temperature. The greenhouse treatments consisted of moving 18 plants at selected phenological stages (V4, V9, anthesis, lag phase, early grain filling) from the cool chamber to the hot chamber over a week and then returning the plants back to the cool chamber. An additional control treatment remained in the cool chamber all season, and in 2015 and 2016, one treatment remained permanently in the hot chamber. Two maize models in the Decision Support System for Agrotechnology Transfer (DSSAT) V4.6 were compared, namely CERES and IXIM. The HUM version included additional components that were previously developed to improve the crop N simulation and to incorporate the anthesis-silking interval (ASI). A new thermal time calculation, a heat stress index, the impact of pollen-sterilizing temperatures, and the explicit simulation of male and female flowering as affected by the daily heat conditions were added to IXIM. The phenology simulation in field experiments by IXIM improved substantially. The RMSE for silking and maturity in CERES were 7.9 and 13.7 days, decreasing in DCIM to 2.8 and 7.3 days, respectively. Similarly, the estimated kernel numbers, kernel weight, grain yield and final biomass were always closer to the measurements in HUM than in CERES. The worst simulations were for kernel weight, and for that reason, the differences in grain yield between the models were small (the RMSE in CERES was 1219 kg ha(-1) vs. 1082 kg ha(-1) in IXIM). The greenhouse results also supported the improved estimations of crop development by IXIM (RMSE of 2.6 days) relative to CERES (7.4 days). The impact of the heat treatments on grain yield was consistently overestimated by CERES, while HUM captured the general trend. The new HUM model improved the CERES simulations when elevated temperatures were included in the evaluation data. Additional model testing with measurements from a wider latitudinal range and relevant heat conditions are required.  
  Address 2017-11-24  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0378-4290 ISBN Medium  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 5180  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: