toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Heinke, J.; Ostberg, S.; Schaphoff, S.; Frieler, K.; Müller, C.; Gerten, D.; Meinshausen, M.; Lucht, W. url  doi
openurl 
  Title A new climate dataset for systematic assessments of climate change impacts as a function of global warming Type Journal Article
  Year 2013 Publication Geoscientific Model Development Abbreviated Journal Geosci. Model Dev.  
  Volume 6 Issue 5 Pages (up) 1689-1703  
  Keywords dangerous anthropogenic interference; vegetation model; carbon-cycle; emissions; targets  
  Abstract In the ongoing political debate on climate change, global mean temperature change (Delta T-glob) has become the yardstick by which mitigation costs, impacts from unavoided climate change, and adaptation requirements are discussed. For a scientifically informed discourse along these lines, systematic assessments of climate change impacts as a function of Delta T-glob are required. The current availability of climate change scenarios constrains this type of assessment to a narrow range of temperature change and/or a reduced ensemble of climate models. Here, a newly composed dataset of climate change scenarios is presented that addresses the specific requirements for global assessments of climate change impacts as a function of Delta T-glob. A pattern-scaling approach is applied to extract generalised patterns of spatially explicit change in temperature, precipitation and cloudiness from 19 Atmosphere-Ocean General Circulation Models (AOGCMs). The patterns are combined with scenarios of global mean temperature increase obtained from the reduced-complexity climate model MAGICC6 to create climate scenarios covering warming levels from 1.5 to 5 degrees above pre-industrial levels around the year 2100. The patterns are shown to sufficiently maintain the original AOGCMs’ climate change properties, even though they, necessarily, utilise a simplified relationships between Delta T-glob and changes in local climate properties. The dataset (made available online upon final publication of this paper) facilitates systematic analyses of climate change impacts as it covers a wider and finer-spaced range of climate change scenarios than the original AOGCM simulations.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1991-9603 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM Approved no  
  Call Number MA @ admin @ Serial 4490  
Permanent link to this record
 

 
Author Schmitz, C.; Kreidenweis, U.; Lotze-Campen, H.; Popp, A.; Krause, M.; Dietrich, J.P.; Müller, C. url  doi
openurl 
  Title Agricultural trade and tropical deforestation: interactions and related policy options Type Journal Article
  Year 2014 Publication Regional Environmental Change Abbreviated Journal Reg Environ Change  
  Volume 15 Issue 8 Pages (up) 1757-1772  
  Keywords Land-use change; Trade liberalisation; Tropical deforestation; Forest; protection; Agricultural productivity growth; land-use; brazilian amazon; co2 concentrations; carbon emissions; conservation; climate; mitigation; forests; impact; growth; Environmental Sciences & Ecology  
  Abstract The extensive clearing of tropical forests throughout past decades has been partly assigned to increased trade in agricultural goods. Since further trade liberalisation can be expected, remaining rainforests are likely to face additional threats with negative implications for climate mitigation and the local environment. We apply a spatially explicit economic land-use model coupled to a biophysical vegetation model to examine linkages and associated policies between trade and tropical deforestation in the future. Results indicate that further trade liberalisation leads to an expansion of deforestation in Amazonia due to comparative advantages of agriculture in South America. Globally, between 30 and 60 million ha (5-10 %) of tropical rainforests would be cleared additionally, leading to 20-40 Gt additional emissions by 2050. By applying different forest protection policies, those values could be reduced substantially. Most effective would be the inclusion of avoided deforestation into a global emissions trading scheme. Carbon prices corresponding to the concentration target of 550 ppm would prevent deforestation after 2020. Investing in agricultural productivity reduces pressure on tropical forests without the necessity of direct protection. In general, additional trade-induced demand from developed and emerging countries should be compensated by international efforts to protect natural resources in tropical regions.  
  Address 2016-10-31  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1436-3798 1436-378x ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM Approved no  
  Call Number MA @ admin @ Serial 4810  
Permanent link to this record
 

 
Author Bassu, S.; Brisson, N.; Durand, J.-L.; Boote, K.; Lizaso, J.; Jones, J.W.; Rosenzweig, C.; Ruane, A.C.; Adam, M.; Baron, C.; Basso, B.; Biernath, C.; Boogaard, H.; Conijn, S.; Corbeels, M.; Deryng, D.; De Sanctis, G.; Gayler, S.; Grassini, P.; Hatfield, J.; Hoek, S.; Izaurralde, C.; Jongschaap, R.; Kemanian, A.R.; Kersebaum, K.C.; Kim, S.-H.; Kumar, N.S.; Makowski, D.; Müller, C.; Nendel, C.; Priesack, E.; Pravia, M.V.; Sau, F.; Shcherbak, I.; Tao, F.; Teixeira, E.; Timlin, D.; Waha, K. doi  openurl
  Title How do various maize crop models vary in their responses to climate change factors Type Journal Article
  Year 2014 Publication Global Change Biology Abbreviated Journal Glob. Chang. Biol.  
  Volume 20 Issue 7 Pages (up) 2301-2320  
  Keywords Carbon Dioxide/metabolism; *Climate Change; Crops, Agricultural/growth & development/metabolism; Geography; Models, Biological; Temperature; Water/*metabolism; Zea mays/*growth & development/*metabolism; AgMIP; [Co2]; climate; maize; model intercomparison; simulation; uncertainty  
  Abstract Potential consequences of climate change on crop production can be studied using mechanistic crop simulation models. While a broad variety of maize simulation models exist, it is not known whether different models diverge on grain yield responses to changes in climatic factors, or whether they agree in their general trends related to phenology, growth, and yield. With the goal of analyzing the sensitivity of simulated yields to changes in temperature and atmospheric carbon dioxide concentrations [CO2 ], we present the largest maize crop model intercomparison to date, including 23 different models. These models were evaluated for four locations representing a wide range of maize production conditions in the world: Lusignan (France), Ames (USA), Rio Verde (Brazil) and Morogoro (Tanzania). While individual models differed considerably in absolute yield simulation at the four sites, an ensemble of a minimum number of models was able to simulate absolute yields accurately at the four sites even with low data for calibration, thus suggesting that using an ensemble of models has merit. Temperature increase had strong negative influence on modeled yield response of roughly -0.5 Mg ha(-1) per °C. Doubling [CO2 ] from 360 to 720 μmol mol(-1) increased grain yield by 7.5% on average across models and the sites. That would therefore make temperature the main factor altering maize yields at the end of this century. Furthermore, there was a large uncertainty in the yield response to [CO2 ] among models. Model responses to temperature and [CO2 ] did not differ whether models were simulated with low calibration information or, simulated with high level of calibration information.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1354-1013 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM Approved no  
  Call Number MA @ admin @ Serial 4510  
Permanent link to this record
 

 
Author Müller, C.; Waha, K.; Bondeau, A.; Heinke, J. doi  openurl
  Title Hotspots of climate change impacts in sub-Saharan Africa and implications for adaptation and development Type Journal Article
  Year 2014 Publication Global Change Biology Abbreviated Journal Glob. Chang. Biol.  
  Volume 20 Issue 8 Pages (up) 2505-2517  
  Keywords Africa South of the Sahara; *Climate Change; Crops, Agricultural; Environment; Hydrology; *Models, Theoretical; Uncertainty; adaptation; climate change; development; impacts; modeling; sub-Saharan Africa  
  Abstract Development efforts for poverty reduction and food security in sub-Saharan Africa will have to consider future climate change impacts. Large uncertainties in climate change impact assessments do not necessarily complicate, but can inform development strategies. The design of development strategies will need to consider the likelihood, strength, and interaction of climate change impacts across biosphere properties. We here explore the spread of climate change impact projections and develop a composite impact measure to identify hotspots of climate change impacts, addressing likelihood and strength of impacts. Overlapping impacts in different biosphere properties (e.g. flooding, yields) will not only claim additional capacity to respond, but will also narrow the options to respond and develop. Regions with severest projected climate change impacts often coincide with regions of high population density and poverty rates. Science and policy need to propose ways of preparing these areas for development under climate change impacts.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1354-1013 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4534  
Permanent link to this record
 

 
Author Piontek, F.; Müller, C.; Pugh, T.A.; Clark, D.B.; Deryng, D.; Elliott, J.; Colón González, F.J.; Flörke, M.; Folberth, C.; Franssen, W.; Frieler, K.; Friend, A.D.; Gosling, S.N.; Hemming, D.; Khabarov, N.; Kim, H.; Lomas, M.R.; Masaki, Y.; Mengel, M.; Morse, A.; Neumann, K.; Nishina, K.; Ostberg, S.; Pavlick, R.; Ruane, A.C.; Schewe, J.; Schmid, E.; Stacke, T.; Tang, Q.; Tessler, Z.D.; Tompkins, A.M.; Warszawski, L.; Wisser, D.; Schellnhuber, H.J. doi  openurl
  Title Multisectoral climate impact hotspots in a warming world Type Journal Article
  Year 2014 Publication Proceedings of the National Academy of Sciences of the United States of America Abbreviated Journal Proc. Natl. Acad. Sci. U. S. A.  
  Volume 111 Issue 9 Pages (up) 3233-3238  
  Keywords Agriculture/statistics & numerical data; Computer Simulation; Conservation of Natural Resources/*methods; Ecosystem; *Environment; Geography; Global Warming/economics/*statistics & numerical data; Humans; Malaria/epidemiology; *Models, Theoretical; *Public Policy; Temperature; Water Supply/statistics & numerical data; Isi-mip; coinciding pressures; differential climate impacts  
  Abstract The impacts of global climate change on different aspects of humanity’s diverse life-support systems are complex and often difficult to predict. To facilitate policy decisions on mitigation and adaptation strategies, it is necessary to understand, quantify, and synthesize these climate-change impacts, taking into account their uncertainties. Crucial to these decisions is an understanding of how impacts in different sectors overlap, as overlapping impacts increase exposure, lead to interactions of impacts, and are likely to raise adaptation pressure. As a first step we develop herein a framework to study coinciding impacts and identify regional exposure hotspots. This framework can then be used as a starting point for regional case studies on vulnerability and multifaceted adaptation strategies. We consider impacts related to water, agriculture, ecosystems, and malaria at different levels of global warming. Multisectoral overlap starts to be seen robustly at a mean global warming of 3 °C above the 1980-2010 mean, with 11% of the world population subject to severe impacts in at least two of the four impact sectors at 4 °C. Despite these general conclusions, we find that uncertainty arising from the impact models is considerable, and larger than that from the climate models. In a low probability-high impact worst-case assessment, almost the whole inhabited world is at risk for multisectoral pressures. Hence, there is a pressing need for an increased research effort to develop a more comprehensive understanding of impacts, as well as for the development of policy measures under existing uncertainty.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0027-8424 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM Approved no  
  Call Number MA @ admin @ Serial 4538  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: