toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Nendel, C.; Wieland, R.; Mirschel, W.; Specka, X.; Guddat, C.; Kersebaum, K.C. url  doi
openurl 
  Title Simulating regional winter wheat yields using input data of different spatial resolution Type Journal Article
  Year 2013 Publication Field Crops Research Abbreviated Journal Field Crops Research  
  Volume 145 Issue Pages 67-77  
  Keywords monica; agro-ecosystem model; dynamic modelling; scaling; input data; climate-change; crop yield; nitrogen dynamics; food security; mineral nitrogen; soil-moisture; scaling-up; model; maize; water  
  Abstract The success of using agro-ecosystem models for the high-resolution simulation of agricultural yields for larger areas is often hampered by a lack of input data. We investigated the effect of different spatially resolved soil and weather data used as input for the MONICA model on its ability to reproduce winter wheat yields in the Federal State of Thuringia, Germany (16,172 km(2)). The combination of one representative soil and one weather station was insufficient to reproduce the observed mean yield of 6.66 +/- 0.87 t ha(-1) for the federal state. Use of a 100 m x 100 m grid of soil and relief information combined with just one representative weather station yielded a good estimator (7.01 +/- 1.47 t ha(-1)). The soil and relief data grid used in combination with weather information from 14 weather stations in a nearest neighbour approach produced even better results (6.60 +/- 1.37 t ha(-1)); the same grid used with 39 additional rain gauges and an interpolation algorithm that included an altitude correction of temperature data slightly overpredicted the observed mean (7.36 +/- 1.17 t ha(-1)). It was concluded that the apparent success of the first two high-resolution approaches over the latter was based on two effects that cancelled each other out: the calibration of MONICA to match high-yield experimental data and the growth-defining and -limiting effect of weather data that is not representative for large parts of the region. At the county and farm level the MONICA model failed to reproduce the 1992-2010 time series of yields, which is partly explained by the fact that many growth-reducing factors were not considered in the model. (C) 2013 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0378-4290 ISBN Medium Article  
  Area Expedition Conference (up)  
  Notes CropM, ftnotmacsur Approved no  
  Call Number MA @ admin @ Serial 4498  
Permanent link to this record
 

 
Author Müller, C. doi  openurl
  Title African lessons on climate change risks for agriculture Type Journal Article
  Year 2013 Publication Annual Review of Nutrition Abbreviated Journal Ann. Rev. Nutr.  
  Volume 33 Issue 1 Pages 395-411  
  Keywords Africa/epidemiology; *Climate Change/economics; Crops, Agricultural/economics/*growth & development; Diet/adverse effects/economics; Forecasting; *Global Health/economics/trends; Humans; Malnutrition/economics/epidemiology/prevention & control; *Models, Theoretical; Risk; Soil/chemistry; Water Resources/economics  
  Abstract Climate change impact assessments on agriculture are subject to large uncertainties, as demonstrated in the present review of recent studies for Africa. There are multiple reasons for differences in projections, including uncertainties in greenhouse gas emissions and patterns of climate change; assumptions on future management, aggregation, and spatial extent; and methodological differences. Still, all projections agree that climate change poses a significant risk to African agriculture. Most projections also see the possibility of increasing agricultural production under climate change, especially if suitable adaptation measures are assumed. Climate change is not the only projected pressure on African agriculture, which struggles to meet demand today and may need to feed an additional one billion individuals by 2050. Development strategies are urgently needed, but they will need to consider future climate change and its inherent uncertainties. Science needs to show how existing synergies between climate change adaptation and development can be exploited.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0199-9885 1545-4312 ISBN Medium Article  
  Area Expedition Conference (up)  
  Notes CropM Approved no  
  Call Number MA @ admin @ Serial 4496  
Permanent link to this record
 

 
Author Morales, I.; Diaz, B.M.; Hermoso De Mendoza, A.; Nebreda, M.; Fereres, A. url  doi
openurl 
  Title The Development of an Economic Threshold for Nasonovia ribisnigri (Hemiptera: Aphididae) on Lettuce in Central Spain Type Journal Article
  Year 2013 Publication Journal of Economic Entomology Abbreviated Journal J. Econ. Entomol.  
  Volume 106 Issue 2 Pages 891-898  
  Keywords Animals; Aphids/*physiology; Insect Control/economics/methods; Insecticides/administration & dosage; Lettuce/*growth & development; Nitriles/administration & dosage; Nonlinear Dynamics; Population Density; Pyrethrins/administration & dosage; Seasons; Spain  
  Abstract This study reports economic thresholds for the lettuce aphid Nasonovia ribisnigri (Mosley), based exclusively on cosmetic damage, that is, presence or absence of aphids at harvest time. Field trials were conducted in La Poveda Experimental Farm, Madrid (Spain) during autumn (2004 and 2005) and spring (2005 and 2006). Plants were arranged in plots and just before the formation of lettuce hearts they were infested with different densities of N. ribisnigri. Two days later, half of each plot was treated with tau-fluvalinate (Klartan24AF) and the other half remained as an untreated control. Economic thresholds were obtained from nonlinear regressions calculated between the percentage of commercial plants at the end of the crop cycle for both, treated and untreated semiplots, and the different initial densities of N. ribisnigri per plant. Two criteria were used to consider a commercial lettuce plant: a conservative estimate (0 aphids/plant) and a lax one (< 5 aphids/plant). Thus, an economic threshold was established for each season and criterium. The economic thresholds that were obtained with the most and least conservative criteria were in spring 0.06 and 0.12 aphids per plant, and in autumn 0.07 and 0.13 aphids per plant, respectively. These results show that to avoid cosmetic damage, insecticide sprays are required when a very low aphid density is detected in lettuce seedlings soon after transplant.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-0493 ISBN Medium Article  
  Area Expedition Conference (up)  
  Notes CropM Approved no  
  Call Number MA @ admin @ Serial 4497  
Permanent link to this record
 

 
Author Mansouri, M.; Dumont, B.; Destain, M.-F. url  doi
openurl 
  Title Modeling and prediction of nonlinear environmental system using Bayesian methods Type Journal Article
  Year 2013 Publication Computers and Electronics in Agriculture Abbreviated Journal Computers and Electronics in Agriculture  
  Volume 92 Issue Pages 16-31  
  Keywords state and parameter estimation; variational filter; particle filter; extended kalman filter; nonlinear environmental system; leaf area index and soil moisture model; extended kalman filter; state-space models; parameter-estimation; particle filters; navigation; tutorial; tracking  
  Abstract An environmental dynamic system is usually modeled as a nonlinear system described by a set of nonlinear ODEs. A central challenge in computational modeling of environmental systems is the determination of the model parameters. In these cases, estimating these variables or parameters from other easily obtained measurements can be extremely useful. This work addresses the problem of monitoring and modeling a leaf area index and soil moisture model (LSM) using state estimation. The performances of various conventional and state-of-the-art state estimation techniques are compared when they are utilized to achieve this objective. These techniques include the extended Kalman filter (EKF), particle filter (PF), and the more recently developed technique variational filter (VF). Specifically, two comparative studies are performed. In the first comparative study, the state variables (the leaf-area index LAI, the volumetric water content of the soil layer 1, HUR1 and the volumetric water content of the soil layer 2, HUR2) are estimated from noisy measurements of these variables, and the various estimation techniques are compared by computing the estimation root mean square error (RMSE) with respect to the noise-free data. In the second comparative study, the state variables as well as the model parameters are simultaneously estimated. In this case, in addition to comparing the performances of the various state estimation techniques, the effect of number of estimated model parameters on the accuracy and convergence of these techniques are also assessed. The results of both comparative studies show that the PF provides a higher accuracy than the EKF, which is due to the limited ability of the EKF to handle highly nonlinear processes. The results also show that the VF provides a significant improvement over the PF because, unlike the PF which depends on the choice of sampling distribution used to estimate the posterior distribution, the VF yields an optimum choice of the sampling distribution, which also accounts for the observed data. The results of the second comparative study show that, for all techniques, estimating more model parameters affects the estimation accuracy as well as the convergence of the estimated states and parameters. However, the VF can still provide both convergence as well as accuracy related advantages over other estimation methods. (C) 2013 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-1699 ISBN Medium Article  
  Area Expedition Conference (up)  
  Notes CropM Approved no  
  Call Number MA @ admin @ Serial 4495  
Permanent link to this record
 

 
Author Lindeskog, M.; Arneth, A.; Bondeau, A.; Waha, K.; Seaquist, J.; Olin, S.; Smith, B. url  doi
openurl 
  Title Implications of accounting for land use in simulations of ecosystem carbon cycling in Africa Type Journal Article
  Year 2013 Publication Earth System Dynamics Abbreviated Journal Earth System Dynamics  
  Volume 4 Issue 2 Pages 385-407  
  Keywords global vegetation model; sub-saharan africa; climate-change; yield gaps; co2; balance; dynamics; atmosphere; cover; variability  
  Abstract Dynamic global vegetation models (DGVMs) are important tools for modelling impacts of global change on ecosystem services. However, most models do not take full account of human land management and land use and land cover changes (LULCCs). We integrated croplands and pasture and their management and natural vegetation recovery and succession following cropland abandonment into the LPJ-GUESS DGVM. The revised model was applied to Africa as a case study to investigate the implications of accounting for land use on net ecosystem carbon balance (NECB) and the skill of the model in describing agricultural production and reproducing trends and patterns in vegetation structure and function. The seasonality of modelled monthly fraction of absorbed photosynthetically active radiation (FPAR) was shown to agree well with satellite-inferred normalised difference vegetation index (NDVI). In regions with a large proportion of cropland, the managed land addition improved the FPAR vs. NDVI fit significantly. Modelled 1991-1995 average yields for the seven most important African crops, representing potential optimal yields limited only by climate forcings, were generally higher than reported FAO yields by a factor of 2-6, similar to previous yield gap estimates. Modelled inter-annual yield variations during 1971-2005 generally agreed well with FAO statistics, especially in regions with pronounced climate seasonality. Modelled land-atmosphere carbon fluxes for Africa associated with land use change (0.07 PgC yr(-1) release to the atmosphere for the 1980s) agreed well with previous estimates. Cropland management options (residue removal, grass as cover crop) were shown to be important to the land-atmosphere carbon flux for the 20th century.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2190-4979 ISBN Medium Article  
  Area Expedition Conference (up)  
  Notes CropM Approved no  
  Call Number MA @ admin @ Serial 4494  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: