toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Kyle, P.; Müller, C.; Calvin, K.; Thomson, A. url  doi
openurl 
  Title Meeting the radiative forcing targets of the representative concentration pathways in a world with agricultural climate impacts Type Journal Article
  Year 2014 Publication Earth’s Future Abbreviated Journal Earth’s Future  
  Volume 2 Issue Pages 83-98  
  Keywords integrated assessment; climate impacts; emissions mitigation; representative concentration pathway; land-use; carbon; stabilization; cmip5  
  Abstract This study assesses how climate impacts on agriculture may change the evolution of the agricultural and energy systems in meeting the end-of-century radiative forcing targets of the representative concentration pathways (RCPs). We build on the recently completed Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP) exercise that has produced global gridded estimates of future crop yields for major agricultural crops using climate model projections of the RCPs from the Coupled Model Intercomparison Project Phase 5 (CMIP5). For this study we use the bias-corrected outputs of the HadGEM2-ES climate model as inputs to the LPJmL crop growth model, and the outputs of LPJmL to modify inputs to the GCAM integrated assessment model. Our results indicate that agricultural climate impacts generally lead to an increase in global cropland, as compared with corresponding emissions scenarios that do not consider climate impacts on agricultural productivity. This is driven mostly by negative impacts on wheat, rice, other grains, and oil crops. Still, including agricultural climate impacts does not significantly increase the costs or change the technological strategies of global, whole-system emissions mitigation. In fact, to meet the most aggressive climate change mitigation target (2.6W/m(2) in 2100), the net mitigation costs are slightly lower when agricultural climate impacts are considered. Key contributing factors to these results are (a) low levels of climate change in the low-forcing scenarios, (b) adaptation to climate impacts simulated in GCAM through inter-regional shifting in the production of agricultural goods, and (c) positive average climate impacts on bioenergy crop yields.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2328-4277 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved (up) no  
  Call Number MA @ admin @ Serial 4531  
Permanent link to this record
 

 
Author Kersebaum, K.C.; Nendel, C. url  doi
openurl 
  Title Site-specific impacts of climate change on wheat production across regions of Germany using different CO2 response functions Type Journal Article
  Year 2014 Publication European Journal of Agronomy Abbreviated Journal European Journal of Agronomy  
  Volume 52 Issue Pages 22-32  
  Keywords climate change; co2 effect; crop yield; water use efficiency; groundwater; modeling nitrogen dynamics; winter-wheat; carbon-dioxide; assessing uncertainties; agricultural crops; potential impact; enrichment face; elevated co2; soil; simulation  
  Abstract Impact of climate change on crop growth, groundwater recharge and nitrogen leaching in winter wheat production in Germany was assessed using the agro-ecosystem model HERMES with a downscaled (WETTREG) climate change scenario A1B from the ECHAM5 global circulation model. Three alternative algorithms describing the impact of atmospheric CO2 concentration on crop growth (a simple Farquhar-type algorithm, a combined light-use efficiency – maximum assimilation approach and a simple scaling of the maximum assimilation rate) in combination with a Penman-Monteith approach which includes a simple stomata conduction model for evapotranspiration under changing CO2 concentrations were compared within the framework of the HERMES model. The effect of differences in regional climate change, site conditions and different CO2 algorithms on winter wheat yield, groundwater recharge and nitrogen leaching was assessed in 22 regional simulation case studies across Germany. Results indicate that the effects of climate change on wheat production will vary across Germany due to different regional expressions of climate change projection. Predicted yield changes between the reference period (1961-1990) and a future period (2021-2050) range from -0.4 t ha(-1), -0.8 t ha(-1) and -0.6 t ha(-1) at sites in southern Germany to +0.8 t ha(-1), +0.6 t ha(-1) and +0.8 t ha(-1) at coastal regions for the three CO2 algorithms, respectively. On average across all regions, a relative yield change of +0.9%, +3.0%, and +6.0%, respectively, was predicted for Germany. In contrast, a decrease of -11.6% was predicted without the consideration of a CO2 effect. However, simulated yield changes differed even within regions as site conditions had a strong influence on crop growth. Particularly, groundwater-affected sites showed a lower vulnerability to increasing drought risk. Groundwater recharge was estimated to change correspondingly to changes in precipitation. The consideration of the CO2 effect on transpiration in the model led to a prediction of higher rates of annual deep percolation (+16 mm on average across all sites), which was due to higher water-use efficiency of the crops. In contrast to groundwater recharge, simulated nitrogen leaching varied with the choice of the photosynthesis algorithm, predicting a slight reduction in most of the areas. The results underline the necessity of high-resolution data for model-based regional climate change impact assessment and development of adaptation measures. (C) 2013 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1161-0301 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM Approved (up) no  
  Call Number MA @ admin @ Serial 4527  
Permanent link to this record
 

 
Author Klein, D.; Luderer, G.; Kriegler, E.; Strefler, J.; Bauer, N.; Leimbach, M.; Popp, A.; Dietrich, J.P.; Humpenöder, F.; Lotze-Campen, H.; Edenhofer, O. url  doi
openurl 
  Title The value of bioenergy in low stabilization scenarios: an assessment using REMIND-MAgPIE Type Journal Article
  Year 2014 Publication Climatic Change Abbreviated Journal Clim. Change  
  Volume 123 Issue 3-4 Pages 705-718  
  Keywords land-use change; bio-energy; greenhouse gases; carbon-dioxide; climate-change; constraints; emissions; economics; storage; costs  
  Abstract This study investigates the use of bioenergy for achieving stringent climate stabilization targets and it analyzes the economic drivers behind the choice of bioenergy technologies. We apply the integrated assessment framework REMIND-MAgPIE to show that bioenergy, particularly if combined with carbon capture and storage (CCS) is a crucial mitigation option with high deployment levels and high technology value. If CCS is available, bioenergy is exclusively used with CCS. We find that the ability of bioenergy to provide negative emissions gives rise to a strong nexus between biomass prices and carbon prices. Ambitious climate policy could result in bioenergy prices of 70 $/GJ (or even 430 $/GJ if bioenergy potential is limited to 100 EJ/year), which indicates a strong demand for bioenergy. For low stabilization scenarios with BECCS availability, we find that the carbon value of biomass tends to exceed its pure energy value. Therefore, the driving factor behind investments into bioenergy conversion capacities for electricity and hydrogen production are the revenues generated from negative emissions, rather than from energy production. However, in REMIND modern bioenergy is predominantly used to produce low-carbon fuels, since the transport sector has significantly fewer low-carbon alternatives to biofuels than the power sector. Since negative emissions increase the amount of permissible emissions from fossil fuels, given a climate target, bioenergy acts as a complement to fossils rather than a substitute. This makes the short-term and long-term deployment of fossil fuels dependent on the long-term availability of BECCS.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0165-0009 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ftnotmacsur Approved (up) no  
  Call Number MA @ admin @ Serial 4529  
Permanent link to this record
 

 
Author Kahiluoto, H.; Kaseva, J.; Hakala, K.; Himanen, S.J.; Jauhiainen, L.; Rötter, R.P.; Salo, T.; Trnka, M. url  doi
openurl 
  Title Cultivating resilience by empirically revealing response diversity Type Journal Article
  Year 2014 Publication Global Environmental Change Abbreviated Journal Glob. Environ. Change  
  Volume 25 Issue Pages 186-193  
  Keywords generic approach; climate change; food security; agrifood systems; cultivars; adaptive capacity; climate-change; functional diversity; plant-communities; genetic diversity; biodiversity; ecosystems; management; redundancy; evenness; weather  
  Abstract Intensified climate and market turbulence requires resilience to a multitude of changes. Diversity reduces the sensitivity to disturbance and fosters the capacity to adapt to various future scenarios. What really matters is diversity of responses. Despite appeals to manage resilience, conceptual developments have not yet yielded a break-through in empirical applications. Here, we present an approach to empirically reveal the ‘response diversity’: the factors of change that are critical to a system are identified, and the response diversity is determined based on the documented component responses to these factors. We illustrate this approach and its added value using an example of securing food supply in the face of climate variability and change. This example demonstrates that quantifying response diversity allows for a new perspective: despite continued increase in cultivar diversity of barley, the diversity in responses to weather declined during the last decade in the regions where most of the barley is grown in Finland. This was due to greater homogeneity in responses among new cultivars than among older ones. Such a decline in the response diversity indicates increased vulnerability and reduced resilience. The assessment serves adaptive management in the face of both ecological and socioeconomic drivers. Supplier diversity in the food retail industry in order to secure affordable food in spite of global price volatility could represent another application. The approach is, indeed, applicable to any system for which it is possible to adopt empirical information regarding the response by its components to the critical factors of variability and change. Targeting diversification in response to critical change brings efficiency into diversity. We propose the generic procedure that is demonstrated in this study as a means to efficiently enhance resilience at multiple levels of agrifood systems and beyond. (C) 2014 The Authors. Published by Elsevier Ltd.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0959-3780 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM Approved (up) no  
  Call Number MA @ admin @ Serial 4525  
Permanent link to this record
 

 
Author Höhn, J.; Rötter, R.P. url  doi
openurl 
  Title Impact of global warming on European cereal production Type Journal Article
  Year 2014 Publication CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources Abbreviated Journal CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources  
  Volume 9 Issue 022 Pages 1-15  
  Keywords Climate change; Food security; Uncertainty; Wheat; Maize; Barley  
  Abstract This review examines relevant impact assessments identified by a literature search from 1991to date. A bibliographic search was applied to the CAB Abstracts database with a given searchstring. Resultant papers were checked for relevance, based on expert judgment. This yielded 91 papers, which were subjected to further analysis. Firstly, publication intensity over time and distribution by geographic location and cereal crop were examined. Next, for a given crop, the assessments and their outcomes were grouped by type and number of the change variables considered – that is, effects of climate change only, elevated CO 2 and technological progress(improved breeds, management). Finally, separately for individual countries/subregions and Europe as a whole, we examined whether and to what extent study results have changed over time, for example become more positive/negative. Based on our sample, we found that publication intensity increased exponentially during thelast 4 years, the majority of studies are Europe-wide, but some concentrated on a few countries(Italy, Spain and UK), whereby studies on wheat are clearly most popular. Taking the factor of technological progress into account has an overruling influence on results. Finally, over time, projected yield impacts have become more negative. This is in line with finding from global analyses, as reflected by the most recent comparison of agricultural impact chapters, of the 4thand 5th Assessment Reports of Intergovernmental Panel on Climate Change, Working Group II.In the future, there is particular need to consider impacts under various incremental and transformational adaptation measures in more depth (e.g. their interconnections across scales)and with more breadth (e.g. anticipated new breeds). Follow-up reviews should also examine how projected impacts are changing with the new climate scenario data sets (CMIP5) and with improved impact models and assessment approaches.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1749-8848 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved (up) no  
  Call Number MA @ admin @ Serial 4524  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: