toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Nguyen, T.P.L.; Seddaiu, G.; Roggero, P.P. url  doi
openurl 
  Title Declarative or procedural knowledge? Knowledge for enhancing farmers’ mitigation and adaptation behaviour to climate change Type Journal Article
  Year 2019 Publication Journal of Rural Studies Abbreviated Journal Journal of Rural Studies  
  Volume 67 Issue Pages 46-56  
  Keywords Farming systems; Knowledge; Attitude; Practice; Social construction  
  Abstract (down) Climate change poses a major challenge for farmers, but agricultural sustainability, mitigation, and adaptation can effectively decrease climate impacts on agricultural systems. Changes in farming practices are necessary to reduce emissions and to adapt to climate change. However, such modifications to common practices depend, to a large extent, on farmers’ knowledge and attitudes towards climate risks. An empirical study of farmers’ attitudes and knowledge of climate change mitigation and adaptation practices is useful to understand how farmers’ knowledge influences their attitudes and practices towards climate change mitigation and adaptation. Based on a case study characterised by four agricultural farming systems (extensive dairy sheep, intensive dairy cattle, horticultural farming, and rice farming) in the Province of Oristano in Italy, this study contains an investigation of (i) farmers’ knowledge of climate change causes and effects, how they construct such knowledge, and how they adapt to the phenomenon; (ii) what and how are farmers’ attitudes towards climate change causes are shaped under their contextual social interests and values; and (iii) if their practices in responding to climate variability are influenced by their constructed knowledge. The research results showed that farmers’ declarative knowledge of climate change did not affect their adaptation practices but directed farmers’ attitudes towards climate change causes. The findings also underscore the necessity of facilitating social learning spaces for enhancing virtuous behaviours towards climate change mitigation and the sharing and co-production of procedural knowledge for developing shared sustainable climate adaptation practices at the farm level.  
  Address 2019-02-19  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0743-0167 ISBN Medium article  
  Area Expedition Conference  
  Notes CropM, TradeM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 5217  
Permanent link to this record
 

 
Author Schönhart, M.; Schauppenlehner, T.; Kuttner, M.; Kirchner, M.; Schmid, E. url  doi
openurl 
  Title Climate change impacts on farm production, landscape appearance, and the environment: Policy scenario results from an integrated field-farm-landscape model in Austria Type Journal Article
  Year 2016 Publication Agricultural Systems Abbreviated Journal Agricultural Systems  
  Volume 145 Issue Pages 39-50  
  Keywords Integrated land use modeling; Climate change impacts; Mitigation; Adaptation; Field-farm-landscape; Environment; agricultural landscapes; land-use; netherlands; adaptation; indicators; management; responses  
  Abstract (down) Climate change is among the major drivers of agricultural land use change and demands autonomous farm adaptation as well as public mitigation and adaptation policies. In this article, we present an integrated land use model (ILM) mainly combining a bio-physical model and a bio-economic farm model at field, farm and landscape levels. The ILM is applied to a cropland dominated landscape in Austria to analyze impacts of climate change and mitigation and adaptation policy scenarios on farm production as well as on the abiotic environment and biotic environment. Changes in aggregated total farm gross margins from three climate change scenarios for 2040 range between + 1% and + 5% without policy intervention” and compared to a reference situation under the current climate. Changes in aggregated gross margins are even higher if adaptation policies are in place. However, increasing productivity from climate change leads to deteriorating environmental conditions such as declining plant species richness and landscape appearance. It has to be balanced by mitigation and adaptation policies taking into account effects from the considerable spatial heterogeneity such as revealed by the ILM. (C) 2016 Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0308-521x ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, TradeM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4767  
Permanent link to this record
 

 
Author Reidsma, P.; Bakker, M.M.; Kanellopoulos, A.; Alam, S.J.; Paas, W.; Kros, J.; de Vries, W. url  doi
openurl 
  Title Sustainable agricultural development in a rural area in the Netherlands? Assessing impacts of climate and socio-economic change at farm and landscape level Type Journal Article
  Year 2015 Publication Agricultural Systems Abbreviated Journal Agricultural Systems  
  Volume 141 Issue Pages 160-173  
  Keywords Integrated assessment; Global change; Sustainability; Agriculture; Farm; structural change; Spatially explicit; Climate smart agriculture; affecting land-use; integrated assessment; multiobjective optimization; analytical framework; trade-offs; systems; uncertainties; policies; future; adaptation  
  Abstract (down) Changes in climate, technology, policy and prices affect agricultural and rural development. To evaluate whether this development is sustainable, impacts of these multiple drivers need to be assessed for multiple indicators. In a case study area in the Netherlands, a bio-economic farm model, an agent-based land-use change model, and a regional emission model have been used to simulate rural development under two plausible global change scenarios at both farm and landscape level. Results show that in this area, climate change will have mainly negative economic impacts (dairy gross margin, arable gross margin, economic efficiency, milk production) in the warmer and drier W+ scenario, while impacts are slightly positive in the G scenario with moderate climate change. Dairy farmers are worse off than arable farmers in both scenarios. Conversely, when the W+ scenario is embedded in the socio-economic Global Economy (GE) scenario, changes in technology, prices, and policy are projected to have a positive economic impact, more than offsetting the negative climate impacts. Important is, however, that environmental impacts (global warming, terrestrial and aquatic eutrophication) are largely negative and social impacts (farm size, number of farms, nature area, odour) are mixed. In the G scenario combined with the socio-economic Regional Communities (RC) scenario the average dairy gross margin in particular is negatively affected. Social impacts are similarly mixed as in the GE scenario, while environmental impacts are less severe. Our results suggest that integrated assessments at farm and landscape level can be used to guide decision-makers in spatial planning policies and climate change adaptation. As there will always be trade-offs between economic, social, and environmental impacts stakeholders need to interact and decide upon most important directions for policies. This implies a choice between production and income on the one hand and social and environmental services on the other hand  
  Address 2016-06-01  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0308-521x ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM Approved no  
  Call Number MA @ admin @ Serial 4742  
Permanent link to this record
 

 
Author Kässi, P.; Känkänen, H.; Niskanen, O.; Lehtonen, H.; Höglind, M. url  doi
openurl 
  Title Farm level approach to manage grass yield variation under climate change in Finland and north-western Russia Type Journal Article
  Year 2015 Publication Biosystems Engineering Abbreviated Journal Biosystems Engineering  
  Volume 140 Issue Pages 11-22  
  Keywords silage grass; risk management; dairy farms; buffer storage; agricultural economics; grassland modelling; dairy-cows; impact; security; timothy; harvest; future; growth; norway; europe; time  
  Abstract (down) Cattle feeding in Northern Europe is based on grass silage, but grass growth is highly dependent on weather conditions. If ensuring sufficient silage availability in every situation is prioritised, the lowest expected yield level determines the cultivated area in farmers’ decision-making. One way to manage the variation in grass yield is to increase grass production and silage storage capacity so that they exceed the annual consumption at the farm. The cost of risk management in the current and the projected future climate was calculated taking into account grassland yield and yield variability for three study areas under current and mid-21st century climate conditions. The dataset on simulated future grass yields used as input for the risk management calculations were taken from a previously published simulation study. Strategies investigated included using up to 60% more silage grass area than needed in a year with average grass yields, and storing silage for up to 6 months more than consumed in a year (buffer storage). According to the results, utilising an excess silage grass area of 20% and a silage buffer storage capacity of 6 months were the most economic ways of managing drought risk in both the baseline climate and the projected climate of 2046-2065. It was found that the silage yield risk due to drought is likely to decrease in all studied locations, but the drought risk and costs implied still remain significant. (C) 2015 IAgrE. Published by Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1537-5110 ISBN Medium Article  
  Area Expedition Conference  
  Notes TradeM Approved no  
  Call Number MA @ admin @ Serial 4671  
Permanent link to this record
 

 
Author Sandhu, H.; Wratten, S.; Costanza, R.; Pretty, J.; Porter, J.R.; Reganold, J. url  doi
openurl 
  Title Significance and value of non-traded ecosystem services on farmland Type Journal Article
  Year 2015 Publication PeerJ Abbreviated Journal PeerJ  
  Volume 3 Issue Pages e762  
  Keywords Agroecosystems; Arable farmland; Economic value; Ecosystem services; Externalities; New Zealand  
  Abstract (down) Background. Ecosystem services (ES) generated within agricultural landscapes, including field boundaries, are vital for the sustainable supply of food and fibre. However, the value of ES in agriculture has not been quantified experimentally and then extrapolated globally. Methods. We quantified the economic value of two key but contrasting ES (biological control of pests and nitrogen mineralisation) provided by non-traded non-crop species in ten organic and ten conventional arable fields in New Zealand using field experiments. The arable crops grown, same for each organic and conventional pair, were peas (Pisum sativum), beans (Phaseolus vulgaris), barley (Hordeum vulgare), and wheat (Triticum aestivum). Organic systems were chosen as comparators not because they are the only forms of sustainable agriculture, but because they are subject to easily understood standards. Results. We found that organic farming systems depended on fewer external inputs and produced outputs of energy and crop dry matter generally less than but sometimes similar to those of their conventional counterparts. The economic values of the two selected ES were greater for the organic systems in all four crops, ranging from US$ 68-200 ha(-1) yr(-1) for biological control of pests and from US$ 110-425 ha(-1)yr(-1) for N mineralisation in the organic systems versus US$ 0 ha(-1)yr(-1) for biological control of pests and from US$ 60-244 ha(-1)yr(-1) for N mineralisation in the conventional systems. The total economic value (including market and non-market components) was significantly greater in organic systems, ranging from US$ 1750-4536 ha(-1)yr(-1), with US$ 1585-2560 ha(-1)yr(-1) in the conventional systems. The non-market component of the economic value in organic fields was also significantly higher than those in conventional fields. Discussion. To illustrate the potential magnitude of these two ES to temperate farming systems and agricultural landscapes elsewhere, we then extrapolate these experimentally derived figures to the global temperate cropping area of the same arable crops. We found that the extrapolated net value of the these two services provided by non-traded species could exceed the combined current global costs of pesticide and fertiliser inputs, even if utilised on only 10% of the global arable area. This approach strengthens the case for ES-rich agricultural systems, provided by non-traded species to global agriculture.  
  Address 2016-10-31  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2167-8359 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM Approved no  
  Call Number MA @ admin @ Serial 4807  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: