toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Rötter, R.P.; Höhn, J.G.; Fronzek, S. url  doi
openurl 
  Title Projections of climate change impacts on crop production: A global and a Nordic perspective Type Journal Article
  Year 2012 Publication Acta Agriculturae Scandinavica, Section A – Animal Science Abbreviated Journal (up) Acta Agriculturae Scandinavica, Section A – Animal Science  
  Volume 62 Issue 4 Pages 166-180  
  Keywords climate change; impact projection; food production; uncertainty; crop simulation model; food security; integrated assessment; winter-wheat; scenarios; agriculture; adaptation; temperature; models; yield; scale  
  Abstract Global climate is changing and food production is very sensitive to weather and climate variations. Global assessments of climate change impacts on food production have been made since the early 1990s, initially with little attention to the uncertainties involved. Although there has been abundant analysis of uncertainties in future greenhouse gas emissions and their impacts on the climate system, uncertainties related to the way climate change projections are scaled down as appropriate for different analyses and in modelling crop responses to climate change, have been neglected. This review paper mainly addresses uncertainties in crop impact modelling and possibilities to reduce them. We specifically aim to (i) show ranges of projected climate change-induced impacts on crop yields, (ii) give recommendations on use of emission scenarios, climate models, regionalization and ensemble crop model simulations for different purposes and (iii) discuss improvements and a few known unknowns’ affecting crop impact projections.  
  Address 2016-10-31  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0906-4702 1651-1972 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ftnotmacsur Approved no  
  Call Number MA @ admin @ Serial 4802  
Permanent link to this record
 

 
Author Rötter, R.P.; Höhn, J.G.; Fronzek, S. doi  openurl
  Title Projections of climate change impacts on crop production – a global and a Nordic perspective Type Journal Article
  Year 2012 Publication Acta Agriculturae Scandinavica, Section A – Animal Science Abbreviated Journal (up) Acta Agriculturae Scandinavica, Section A – Animal Science  
  Volume 62 Issue Pages 166-180  
  Keywords climate change; impact projection; food production; uncertainty; crop simulation model; food security; integrated assessment; winter-wheat; scenarios; agriculture; adaptation; temperature; models; yield; scale  
  Abstract Global climate is changing and food production is very sensitive to weather and climate variations. Global assessments of climate change impacts on food production have been made since the early 1990s, initially with little attention to the uncertainties involved. Although there has been abundant analysis of uncertainties in future greenhouse gas emissions and their impacts on the climate system, uncertainties related to the way climate change projections are scaled down as appropriate for different analyses and in modelling crop responses to climate change, have been neglected. This review paper mainly addresses uncertainties in crop impact modelling and possibilities to reduce them. We specifically aim to (i) show ranges of projected climate change-induced impacts on crop yields, (ii) give recommendations on use of emission scenarios, climate models, regionalization and ensemble crop model simulations for different purposes and (iii) discuss improvements and a few known unknowns’ affecting crop impact projections.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0906-4702, 1651-1972 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ftnotmacsur Approved no  
  Call Number MA @ admin @ Serial 4591  
Permanent link to this record
 

 
Author Hoffmann, M.P.; Haakana, M.; Asseng, S.; Höhn, J.G.; Palosuo, T.; Ruiz-Ramos, M.; Fronzek, S.; Ewert, F.; Gaiser, T.; Kassie, B.T.; Paff, K.; Rezaei, E.E.; Rodríguez, A.; Semenov, M.; Srivastava, A.K.; Stratonovitch, P.; Tao, F.; Chen, Y.; Rötter, R.P. url  doi
openurl 
  Title How does inter-annual variability of attainable yield affect the magnitude of yield gaps for wheat and maize? An analysis at ten sites Type Journal Article
  Year 2017 Publication Agricultural Systems Abbreviated Journal (up) Agric. Syst.  
  Volume Issue Pages in press  
  Keywords  
  Abstract Highlights • The larger simulated attainable yield for a specific crop season, the larger the yield gap. • Average size of the yield gap is not affected by the inter-annual variability of attainable yield. • Technology levels (resource input and accessibility) determine average yield gap. • To reduce yield gaps in rainfed environments, farmers need to improve season-specific crop management. Abstract Provision of food security in the face of increasing global food demand requires narrowing of the gap between actual farmer’s yield and maximum attainable yield. So far, assessments of yield gaps have focused on average yield over 5–10 years, but yield gaps can vary substantially between crop seasons. In this study we hypothesized that climate-induced inter-annual yield variability and associated risk is a major barrier for farmers to invest, i.e. increase inputs to narrow the yield gap. We evaluated the importance of inter-annual attainable yield variability for the magnitude of the yield gap by utilizing data for wheat and maize at ten sites representing some major food production systems and a large range of climate and soil conditions across the world. Yield gaps were derived from the difference of simulated attainable yields and regional recorded farmer yields for 1981 to 2010. The size of the yield gap did not correlate with the amplitude of attainable yield variability at a site, but was rather associated with the level of available resources such as labor, fertilizer and plant protection inputs. For the sites in Africa, recorded yield reached only 20% of the attainable yield, while for European, Asian and North American sites it was 56–84%. Most sites showed that the higher the attainable yield of a specific season the larger was the yield gap. This significant relationship indicated that farmers were not able to take advantage of favorable seasonal weather conditions. To reduce yield gaps in the different environments, reliable seasonal weather forecasts would be required to allow farmers to manage each seasonal potential, i.e. overcoming season-specific yield limitations.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0308521x ISBN Medium  
  Area CropM Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4985  
Permanent link to this record
 

 
Author Hoffmann, M.P.; Haakana, M.; Asseng, S.; Höhn, J.G.; Palosuo, T.; Ruiz-Ramos, M.; Fronzek, S.; Ewert, F.; Gaiser, T.; Kassie, B.T.; Paff, K.; Rezaei, E.E.; Rodríguez, A.; Semenov, M.; Srivastava, A.K.; Stratonovitch, P.; Tao, F.; Chen, Y.; Rötter, R.P. url  doi
openurl 
  Title How does inter-annual variability of attainable yield affect the magnitude of yield gaps for wheat and maize? An analysis at ten sites Type Journal Article
  Year 2017 Publication Agricultural Systems Abbreviated Journal (up) Agric. Syst.  
  Volume 159 Issue Pages 199-208  
  Keywords  
  Abstract Highlights • The larger simulated attainable yield for a specific crop season, the larger the yield gap. • Average size of the yield gap is not affected by the inter-annual variability of attainable yield. • Technology levels (resource input and accessibility) determine average yield gap. • To reduce yield gaps in rainfed environments, farmers need to improve season-specific crop management. Abstract Provision of food security in the face of increasing global food demand requires narrowing of the gap between actual farmer’s yield and maximum attainable yield. So far, assessments of yield gaps have focused on average yield over 5–10 years, but yield gaps can vary substantially between crop seasons. In this study we hypothesized that climate-induced inter-annual yield variability and associated risk is a major barrier for farmers to invest, i.e. increase inputs to narrow the yield gap. We evaluated the importance of inter-annual attainable yield variability for the magnitude of the yield gap by utilizing data for wheat and maize at ten sites representing some major food production systems and a large range of climate and soil conditions across the world. Yield gaps were derived from the difference of simulated attainable yields and regional recorded farmer yields for 1981 to 2010. The size of the yield gap did not correlate with the amplitude of attainable yield variability at a site, but was rather associated with the level of available resources such as labor, fertilizer and plant protection inputs. For the sites in Africa, recorded yield reached only 20% of the attainable yield, while for European, Asian and North American sites it was 56–84%. Most sites showed that the higher the attainable yield of a specific season the larger was the yield gap. This significant relationship indicated that farmers were not able to take advantage of favorable seasonal weather conditions. To reduce yield gaps in the different environments, reliable seasonal weather forecasts would be required to allow farmers to manage each seasonal potential, i.e. overcoming season-specific yield limitations.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language phase 2+ Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0308521x ISBN Medium  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 5185  
Permanent link to this record
 

 
Author Höhn, J.; Rötter, R.P. url  doi
openurl 
  Title Impact of global warming on European cereal production Type Journal Article
  Year 2014 Publication CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources Abbreviated Journal (up) CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources  
  Volume 9 Issue 022 Pages 1-15  
  Keywords Climate change; Food security; Uncertainty; Wheat; Maize; Barley  
  Abstract This review examines relevant impact assessments identified by a literature search from 1991to date. A bibliographic search was applied to the CAB Abstracts database with a given searchstring. Resultant papers were checked for relevance, based on expert judgment. This yielded 91 papers, which were subjected to further analysis. Firstly, publication intensity over time and distribution by geographic location and cereal crop were examined. Next, for a given crop, the assessments and their outcomes were grouped by type and number of the change variables considered – that is, effects of climate change only, elevated CO 2 and technological progress(improved breeds, management). Finally, separately for individual countries/subregions and Europe as a whole, we examined whether and to what extent study results have changed over time, for example become more positive/negative. Based on our sample, we found that publication intensity increased exponentially during thelast 4 years, the majority of studies are Europe-wide, but some concentrated on a few countries(Italy, Spain and UK), whereby studies on wheat are clearly most popular. Taking the factor of technological progress into account has an overruling influence on results. Finally, over time, projected yield impacts have become more negative. This is in line with finding from global analyses, as reflected by the most recent comparison of agricultural impact chapters, of the 4thand 5th Assessment Reports of Intergovernmental Panel on Climate Change, Working Group II.In the future, there is particular need to consider impacts under various incremental and transformational adaptation measures in more depth (e.g. their interconnections across scales)and with more breadth (e.g. anticipated new breeds). Follow-up reviews should also examine how projected impacts are changing with the new climate scenario data sets (CMIP5) and with improved impact models and assessment approaches.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1749-8848 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4524  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: