|
Abstract |
It is of major importance in modeling to understand and quantify the uncertainty in model predictions, both in order to know how much confidence to have in those predictions, and as a first step toward model improvement. Here we show that there are basically three different approaches to evaluating uncertainty, and we explain the advantages and drawbacks of each. This is a necessary first step toward developing protocols for evaluation of uncertainty and so obtaining a clearer picture of the reliability of crop models. No Label |
|