|
Abstract |
• Evidence use in EU Impact Assessment reports is limited. • Many scientific studies used farm models for assessment of policies in the EU. • Scientific challenges include understanding farmer decision-making and interactions. • Model codes and data should be published, including evaluation. • Stronger science-policy interaction is required. Farm models are potentially relevant tools for policy impact assessment. Governments and international organizations use impact assessment (IA) as an ex-ante policy process and procedure to evaluate impacts of policy options as part of the introduction of new policies. IA is increasingly used. This paper reviews both the use of farm models in such policy IAs in the European Commission, and the development and use of farm models for policy IA by the scientific community over the past decade. A systematic review was performed, based on 202 studies from the period 2007–2015 and results were discussed in a science-policy workshop. Based on the literature review and the workshop, this paper describes progress in the development of farm models, challenges in their use in policy processes and a research and cooperation agenda. We conclude that main issues for a research agenda include: 1) better understanding of farmer decision-making and effects of the social milieu, with increased focus on the interactions between farmers and other actors, the link to the value chain, and farm structural change; 2) thorough and consistent model evaluation and model comparison, with increased attention for model sensitivity and uncertainty, and 3) the organization of a network of farm modellers. In addition, the agenda for science-policy cooperation emphasizes the need for: 4) synthesizing research evidence into systematic reviews as an institutional element in the existing science-policy-interfaces for agricultural systems, 5) improved and timely data collection, allowing to assess heterogeneity in farm objectives, management and indicators, and 6) stronger science-policy interaction, moving from a research-driven to a user-driven approach. |
|