|
Record |
Links |
|
Author |
Lellei-Kovács, E.; Barcza, Z.; Hidy, D.; Horváth, F.; Ittzés, D.; Ittzés, P.; Ma, S.; Bellocchi, G. |
|
|
Title |
Application of Biome-BGC MuSo in managed grassland ecosystems in the Euro-Mediteranean region |
Type |
Conference Article |
|
Year |
2014 |
Publication |
|
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
|
|
|
Keywords |
|
|
|
Abstract |
Simulation of the biogeochemical cycles of extensively and intensively managed grasslands and croplands are of particular interest due to the strong connection between ecosystem production, animal husbandry and food security. In the frame of MACSUR LiveM activities, we conducted a series of „blind tests” (i.e. uncalibrated model simulations with previously optimized model) on differently managed grasslands within Europe and Israel. We used the latest version of Biome-BGC MuSo model, the modified version of the widely used biogeochemical Biome-BGC model. Biome-BGC MuSo contains structural improvements, development of management modules, and the extension of the model to simulate herbaceouos ecosystem carbon and water cycles more faithfully. The studied ecosystems were meadows and pastures located in a variety of climate zones from the Atlantic sector to Central Europe, including Mediterranean sites. Managements were intensive and extensive grazing or mowing with or without different kind of fertilizers. Under similar options we simulated ecosystem variables, e.g. Gross Primary Production (GPP) and Net Ecosystem Exchange (NEE). Our experiences show that different sites have different sensitivity to the parameters (maximum root depth, soil parameters, etc.), but overall the model provided realistic fluxes. Experiences gained during the blind tests led us to further improve the model. Biome-BGC MuSo is available as a standalone model in personal computers, but also through virtual laboratory environment and Biome-BGC Projects database (http://ecos.okologia.mta.hu/bbgcdb) developed within the BioVeL project (http://www.biovel.eu). Scientific workflow management, web service and desktop grid technology can support model optimization in the so-called „calibrated runs” within MACSUR. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
FACCE MACSUR Mid-term Scientific Conference |
|
|
Series Volume |
3(S) Sassari, Italy |
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
FACCE MACSUR Mid-term Scientific Conference, 2014-04-01 to 2014-04-04, Sassari, Italy |
|
|
Notes |
|
Approved |
no |
|
|
Call Number |
MA @ admin @ |
Serial |
5054 |
|
Permanent link to this record |