|
Abstract |
Crop models are increasingly being used to assess the impacts of future climate change on production and food security. High quality, site-specific data on weather, soils, management, and cultivar are needed for those model applications. Also important is that model development, evaluation, improvement, and calibration require additional high quality, site-specific measurements on crop yield, growth, phenology, and ancillary traits. We review the evolution of minimum data set requirements for agroecosystem modeling and then describe the characteristics and ranking of sentinel site data needed for crop model improvement, calibration, and application. We in the Agricultural Model Intercomparison and Improvement Project (AgMIP), propose to rank sentinel site data sets as platinum, gold, silver, and copper, based on the degree of true site-specific measurement of weather, soils, management, crop yield, as well as the quality, comprehensiveness, quantity, accuracy, and value. For example, to be ranked platinum, the weather and soil characterization must be measured on-site, and all management inputs must be known. Dataset ranking will be lower for weather measured off-site or soil traits estimated from soil mapping. Ranking also depends on the intended purposes for data use. If the purpose is to improve a crop model for response to water or N, then additional observations are necessary, such as initial soil water, initial soil inorganic N, and plant N uptake during the growing season to be ranked platinum. Rankings are enhanced by presence of multiple treatments and sites. Examples of platinum-, gold-, and silver-quality data sets for model improvement and calibration uses are illustrated. |
|