|
Abstract |
We adapted a large area crop model, MCWLA-Wheat, to winter wheat Triticum aestivum L. and spring wheat in Finland. We then applied Bayesian probability inversion and a Markov Chain Monte Carlo technique to analyze uncertainties in parameter estimations and to optimize parameters. Finally, a super-ensemble-based probabilistic projection system was updated and applied to project the effects of climate change on wheat productivity and water use in Finland. The system used 6 climate scenarios and 20 sets of crop model parameters. We projected spatiotemporal changes of wheat productivity and water use due to climate change/variability during 2021-2040, 2041-2070, and 2071-2100. The results indicate that with a high probability wheat yields will increase substantially in Finland under the tested climate change scenarios, and spring wheat can benefit more from climate change than winter wheat. Nevertheless, in some areas of southern Finland, wheat production will face increasing risk of high temperature and drought, which can offset the benefits of climate change on wheat yield, resulting in an increase in yield variability and about 30% probability of yield decrease for spring wheat. Compared with spring wheat, the development, photosynthesis, and consequently yield will be much less enhanced for winter wheat, which, together with the risk of extreme weather, will result in an up to 56% probability of yield decrease in eastern parts of Finland. Our study explicitly para meterized the effects of extreme temperature and drought stress on wheat yields, and accounted for a wide range of wheat cultivars with contrasting phenological characteristics and thermal requirements. |
|