|
Abstract |
Agricultural land use in Northern Germany is characterized by a gradient of decreasing precipitation from west to east. Climate change is expected to increase temperature and decrease summer precipitation. In the context of a nationally funded project we aim to analyze climate change adaptation strategies for agricultural land use. The research is focused in 4 study regions from Eastern to Western Germany. The presented modelling approach analyses agricultural land use under climate change and for three policy scenarios (business as usual, biodiversity and climate protection). The biodiversity and climate protection scenarios each reserve area for specific scenario objectives: 10% for specific biodiversity measures and 20% for N-fixing legumes in case of the climate protection scenario. All scenarios are executed for three time steps representing year 2010, 2020 and 2030 with a constant yield increase, extrapolated from past observations. Building on IACS data for a farm typology and expert assessments of current and future land use options, we applied a linear programming farm model. Prices are exogenous and derived from CAPRI model runs for 2020 and 2030. First preliminary results show strong impacts of price assumptions and yield assessments. This results in 2020 in lower gross margins for a number of crops and finally to higher set aside areas in eastern Germany. For 2030 input–output price relations are more favourable for farmers and thus lead to lower set aside areas. No Label |
|