|
Abstract |
The daily weather of the four decades were used as input to EPIC simulation model to test the effects on crop yield, crop evapotranspiration, number of days with water and nitrogen stress in the silage maize -Italian ryegrass irrigated cropping systems in the Oristanese case study area.The monthly DTR (diurnal temperature range) pattern predicted for the FC (future climate, 2020-2030) indicates that spring and summer months are the most sensitive to DTR increase. The increase ryegrass yield simulated by EPIC under FC was interpreted as the positive effects on increased temperature on the winter-spring grass growth rates. The decreased production of maize was attributed to a shortening of the crop cycle, which reduced the intercepted radiation. The simulations run to assess the pure effect of DTR shift indicated almost no effects on crop yield but significant effects on crop evapotranspiration, whose increase observed under FC was largely associated to DTR, particularly in maize. The stochastic generation of daily weather with WXGEN indicates a sufficient accuracy for average DTR patterns and the central part of the daily DTR distribution, while the range of absolute values increased substantially, in relation to the increased probability of extremes in one century vs one decade.(Abstract supplied by the publisher) No Label |
|