|
Castañeda-Vera, A., Leffelaar, P. A., Álvaro-Fuentes, J., Cantero-Martínez, C., & Mínguez, M. I. (2015). Selecting crop models for decision making in wheat insurance. European Journal of Agronomy, 68, 97–116.
Abstract: In crop insurance, the accuracy with which the insurer quantifies the actual risk is highly dependent on the availability on actual yield data. Crop models might be valuable tools to generate data on expected yields for risk assessment when no historical records are available. However, selecting a crop model for a specific objective, location and implementation scale is a difficult task. A look inside the different crop and soil modules to understand how outputs are obtained might facilitate model choice. The objectives of this paper were (i) to assess the usefulness of crop models to be used within a crop insurance analysis and design and (ii) to select the most suitable crop model for drought risk assessment in semi-arid regions in Spain. For that purpose first, a pre-selection of crop models simulating wheat yield under rainfed growing conditions at the field scale was made, and second, four selected models (Aquacrop, CERES-Wheat, CropSyst and WOFOST) were compared in terms of modelling approaches, process descriptions and model outputs. Outputs of the four models for the simulation of winter wheat growth are comparable when water is not limiting, but differences are larger when simulating yields under rainfed conditions. These differences in rainfed yields are mainly related to the dissimilar simulated soil water availability and the assumed linkages with dry matter formation. We concluded that for the simulation of winter wheat growth at field scale in such semi-arid conditions, CERES-Wheat and CropSyst are preferred. WOFOST is a satisfactory compromise between data availability and complexity when detail data on soil is limited. Aquacrop integrates physiological processes in some representative parameters, thus diminishing the number of input parameters, what is seen as an advantage when observed data is scarce. However, the high sensitivity of this model to low water availability limits its use in the region considered. Contrary to the use of ensembles of crop models, we endorse that efforts be concentrated on selecting or rebuilding a model that includes approaches that better describe the agronomic conditions of the regions in which they will be applied. The use of such complex methodologies as crop models is associated with numerous sources of uncertainty, although these models are the best tools available to get insight in these complex agronomic systems. (C) 2015 Elsevier B.V. All rights reserved.
|
|
|
Wolf, J., Ouattara, K., & Supit, I. (2015). Sowing rules for estimating rainfed yield potential of sorghum and maize in Burkina Faso. Agricultural and Forest Meteorology, 214-215, 208–218.
Abstract: To reduce the dependence on local expert knowledge, which is important for large-scale crop modelling studies, we analyzed sowing dates and rules for maize (Zea mays L.) and sorghum (Sorghum bicolor (L)) at three locations in Burkina Faso with strongly decreasing rainfall amounts from south to north. We tested in total 22 methods to derive optimal sowing dates that result in highest water-limited yields and lowest yield variation in a reproducible and objective way. The WOFOST crop growth simulation model was used. We found that sowing dates that are based on local expert knowledge, may work quite well for Burkina Faso and for West Africa in general. However, when no a priori information is available, maize should be sown between Julian days 160 and 200, with application of the following criteria: (a) cumulative rainfall in the sowing window is >= 3 cm or available soil moisture content is >2 cm in the moderately dry central part of Burkina Faso, (b) cumulative rainfall in this period is >= 2 cm or available soil moisture content is >1 cm in the more humid regions in the southern part of Burkina Faso. Sorghum should also be sown between Julian days 160 and 200 with application of the following criteria: (a) in the dry northern part of Burkina Faso the long duration sorghum variety should be sown when cumulative rainfall is >2 cm in the sowing window, and the short duration sorghum variety should be sown later when cumulative rainfall is >= 3 cm, (b) in central Burkina Faso sowing should start when cumulative rainfall in this period is >= 2 cm or when available soil moisture content is >1 cm. Sowing date rules are shown to be generally crop and location specific and are not generic for West Africa. However, the required precision of the sowing rules appears to rapidly decrease with increasing duration and intensity of the rainy season. Sowing delay as a result of, for example, labour constraints, has a disastrous effect on rainfed maize and sorghum yields, particularly in the northern part of West Africa with low rainfall. Optimization of sowing dates can also be done by simulating crop yields in a time window of two months around a predefined sowing date. Using these optimized dates appears to result in a good estimate of the maximal mean rainfed yield level. (C) 2015 Elsevier B.V. All rights reserved.
|
|