|
Waha, K., Müller, C., Bondeau, A., Dietrich, J. P., Kurukulasuriya, P., Heinke, J., et al. (2013). Adaptation to climate change through the choice of cropping system and sowing date in sub-Saharan Africa. Glob. Environ. Change, 23(1), 130–143.
Abstract: Multiple cropping systems provide more harvest security for farmers, allow for crop intensification and furthermore influence ground cover, soil erosion, albedo, soil chemical properties, pest infestation and the carbon sequestration potential. We identify the traditional sequential cropping systems in ten sub-Saharan African countries from a survey dataset of more than 8600 households. We find that at least one sequential cropping system is traditionally used in 35% of all administrative units in the dataset, mainly including maize or groundnuts. We compare six different management scenarios and test their susceptibility as adaptation measure to climate change using the dynamic global vegetation model for managed land LPJmL. Aggregated mean crop yields in sub-Saharan Africa decrease by 6-24% due to climate change depending on the climate scenario and the management strategy. As an exception, some traditional sequential cropping systems in Kenya and South Africa gain by at least 25%. The crop yield decrease is typically weakest in sequential cropping systems and if farmers adapt the sowing date to changing climatic conditions. Crop calorific yields in single cropping systems only reach 40-55% of crop calorific yields obtained in sequential cropping systems at the end of the 21st century. The farmers’ choice of adequate crops, cropping systems and sowing dates can be an important adaptation strategy to climate change and these management options should be considered in climate change impact studies on agriculture. (C) 2012 Elsevier Ltd. All rights reserved.
|
|
|
Wolf, J., Ouattara, K., & Supit, I. (2015). Sowing rules for estimating rainfed yield potential of sorghum and maize in Burkina Faso. Agricultural and Forest Meteorology, 214-215, 208–218.
Abstract: To reduce the dependence on local expert knowledge, which is important for large-scale crop modelling studies, we analyzed sowing dates and rules for maize (Zea mays L.) and sorghum (Sorghum bicolor (L)) at three locations in Burkina Faso with strongly decreasing rainfall amounts from south to north. We tested in total 22 methods to derive optimal sowing dates that result in highest water-limited yields and lowest yield variation in a reproducible and objective way. The WOFOST crop growth simulation model was used. We found that sowing dates that are based on local expert knowledge, may work quite well for Burkina Faso and for West Africa in general. However, when no a priori information is available, maize should be sown between Julian days 160 and 200, with application of the following criteria: (a) cumulative rainfall in the sowing window is >= 3 cm or available soil moisture content is >2 cm in the moderately dry central part of Burkina Faso, (b) cumulative rainfall in this period is >= 2 cm or available soil moisture content is >1 cm in the more humid regions in the southern part of Burkina Faso. Sorghum should also be sown between Julian days 160 and 200 with application of the following criteria: (a) in the dry northern part of Burkina Faso the long duration sorghum variety should be sown when cumulative rainfall is >2 cm in the sowing window, and the short duration sorghum variety should be sown later when cumulative rainfall is >= 3 cm, (b) in central Burkina Faso sowing should start when cumulative rainfall in this period is >= 2 cm or when available soil moisture content is >1 cm. Sowing date rules are shown to be generally crop and location specific and are not generic for West Africa. However, the required precision of the sowing rules appears to rapidly decrease with increasing duration and intensity of the rainy season. Sowing delay as a result of, for example, labour constraints, has a disastrous effect on rainfed maize and sorghum yields, particularly in the northern part of West Africa with low rainfall. Optimization of sowing dates can also be done by simulating crop yields in a time window of two months around a predefined sowing date. Using these optimized dates appears to result in a good estimate of the maximal mean rainfed yield level. (C) 2015 Elsevier B.V. All rights reserved.
|
|