|
Biewald, A., Rolinski, S., Lotze-Campen, H., Schmitz, C., & Dietrich, J. P. (2014). Valuing the impact of trade on local blue water. Ecol. Econ., 101, 43–53.
Abstract: International trade of agricultural goods impacts local water scarcity. By quantifying the effect of trade on crop production on grid-cell level and combining it with cell- and crop-specific virtual water contents, we are able to determine green and blue water consumption and savings. Connecting the information on trade-related blue water usage to water shadow prices gives us the possibility to value the impact of international food crop trade on local blue water resources. To determine the trade-related value of the blue water usage, we employ two models: first, an economic land- and water-use model, simulating agricultural trade, production and water-shadow prices and second, a global vegetation and agricultural model, modeling the blue and green virtual water content of the traded crops. Our study found that globally, the international trade of food crops saves blue water worth 2.4 billion US$. This net saving occurs despite the fact that Europe exports virtual blue water in food crops worth 3.1 billion US$. Countries in the Middle East and South Asia profit from trade by importing water intensive crops, countries in Southern Europe on the other hand export water intensive agricultural goods from water scarce sites, deteriorating local water scarcity. (C) 2014 Elsevier B.V. All rights reserved.
|
|
|
Dass, P., Müller, C., Brovkin, V., & Cramer, W. (2013). Can bioenergy cropping compensate high carbon emissions from large-scale deforestation of high latitudes. Earth System Dynamics, 4(2), 409–424.
Abstract: Numerous studies have concluded that deforestation of the high latitudes result in a global cooling. This is mainly because of the increased albedo of deforested land which dominates over other biogeophysical and biogeochemical mechanisms in the energy balance. This dominance, however, may be due to an underestimation of the biogeochemical response, as carbon emissions are typically at or below the lower end of estimates. Here, we use the dynamic global vegetation model LPJmL for a better estimate of the carbon cycle under such large-scale deforestation. These studies are purely theoretical in order to understand the role of vegetation in the energy balance and the earth system. They must not be mistaken as possible mitigation options, because of the devastating effects on pristine ecosystems. For realistic assumptions of land suitability, the total emissions computed in this study are higher than that of previous studies assessing the effects of boreal deforestation. The warming due to biogeochemical effects ranges from 0.12 to 0.32 degrees C, depending on the climate sensitivity. Using LPJmL to assess the mitigation potential of bioenergy plantations in the suitable areas of the deforested region, we find that the global biophysical bioenergy potential is 68.1 +/- 5.6 EJ yr(-1) of primary energy at the end of the 21st century in the most plausible scenario. The avoided combustion of fossil fuels over the time frame of this experiment would lead to further cooling. However, since the carbon debt caused by the cumulative emissions is not repaid by the end of the 21st century, the global temperatures would increase by 0.04 to 0.11 degrees C. The carbon dynamics in the high latitudes especially with respect to permafrost dynamics and long-term carbon losses, require additional attention in the role for the Earth’s carbon and energy budget.
|
|
|
Francioni, M., D’Ottavio, P., Lai, R., Trozzo, L., Budimir, K., Foresi, L., et al. (2019). Seasonal Soil Respiration Dynamics and Carbon-Stock Variations in Mountain Permanent Grasslands Compared to Arable Lands. Agriculture-Basel, 9(8), 165.
Abstract: Permanent grasslands provide a wide array of ecosystem services. Despite this, few studies have investigated grassland carbon (C) dynamics, and especially those related to the effects of land-use changes. This study aimed to determine whether the land-use change from permanent grassland to arable lands resulted in variations in the soil C stock, and whether such variations were due to increased soil respiration or to management practices. To address this, seasonal variations of soil respiration, sensitivity of soil respiration to soil temperature (Q(10)), and soil C stock variations generated by land-use changes were analyzed in a temperate mountain area of central Italy. The comparisons were performed for a permanent grassland and two adjacent fields, one cultivated with lentil and the other with emmer, during the 2015 crop year. Soil respiration and its heterotrophic component showed different spatial and temporal dynamics. Annual cumulative soil respiration rates were 6.05, 5.05 and 3.99 t C ha(-1) year(-1) for grassland, lentil and emmer, respectively. Both soil respiration and heterotrophic soil respiration were positively correlated with soil temperature at 10 cm depth. Derived Q(10) values were from 2.23 to 6.05 for soil respiration, and from 1.82 to 4.06 for heterotrophic respiration. Soil C stock at over 0.2 m in depth was 93.56, 48.74 and 46.80 t C ha(-1) for grassland, lentil and emmer, respectively. The land-use changes from permanent grassland to arable land lead to depletion in terms of the soil C stock due to water soil erosion. A more general evaluation appears necessary to determine the multiple effects of this land-use change at the landscape scale.
|
|
|
Francone, C., Cassardo, C., Richiardone, R., & Confalonieri, R. (2012). Sensitivity Analysis and Investigation of the Behaviour of the UTOPIA Land-Surface Process Model: A Case Study for Vineyards in Northern Italy. Boundary-Layer Meteorology, 144(3), 419–430.
Abstract: We used sensitivity-analysis techniques to investigate the behaviour of the land-surface model UTOPIA while simulating the micrometeorology of a typical northern Italy vineyard (Vitis vinifera L.) under average climatic conditions. Sensitivity-analysis experiments were performed by sampling the vegetation parameter hyperspace using the Morris method and quantifying the parameter relevance across a wide range of soil conditions. This method was used since it proved its suitability for models with high computational time or with a large number of parameters, in a variety of studies performed on different types of biophysical models. The impact of input variability was estimated on reference model variables selected among energy (e.g. net radiation, sensible and latent heat fluxes) and hydrological (e.g. soilmoisture, surface runoff, drainage) budget components. Maximum vegetation cover and maximum leaf area index were ranked as the most relevant parameters, with sensitivity indices exceeding the remaining parameters by about one order of magnitude. Soil variability had a high impact on the relevance of most of the vegetation parameters: coefficients of variation calculated on the sensitivity indices estimated for the different soils often exceeded 100 %. The only exceptions were represented by maximum vegetation cover and maximum leaf area index, which showed a low variability in sensitivity indices while changing soil type, and confirmed their key role in affecting model results.
|
|
|
Heinke, J., Ostberg, S., Schaphoff, S., Frieler, K., Müller, C., Gerten, D., et al. (2013). A new climate dataset for systematic assessments of climate change impacts as a function of global warming. Geosci. Model Dev., 6(5), 1689–1703.
Abstract: In the ongoing political debate on climate change, global mean temperature change (Delta T-glob) has become the yardstick by which mitigation costs, impacts from unavoided climate change, and adaptation requirements are discussed. For a scientifically informed discourse along these lines, systematic assessments of climate change impacts as a function of Delta T-glob are required. The current availability of climate change scenarios constrains this type of assessment to a narrow range of temperature change and/or a reduced ensemble of climate models. Here, a newly composed dataset of climate change scenarios is presented that addresses the specific requirements for global assessments of climate change impacts as a function of Delta T-glob. A pattern-scaling approach is applied to extract generalised patterns of spatially explicit change in temperature, precipitation and cloudiness from 19 Atmosphere-Ocean General Circulation Models (AOGCMs). The patterns are combined with scenarios of global mean temperature increase obtained from the reduced-complexity climate model MAGICC6 to create climate scenarios covering warming levels from 1.5 to 5 degrees above pre-industrial levels around the year 2100. The patterns are shown to sufficiently maintain the original AOGCMs’ climate change properties, even though they, necessarily, utilise a simplified relationships between Delta T-glob and changes in local climate properties. The dataset (made available online upon final publication of this paper) facilitates systematic analyses of climate change impacts as it covers a wider and finer-spaced range of climate change scenarios than the original AOGCM simulations.
|
|