|
Below, T. B., Mutabazi, K. D., Kirschke, D., Franke, C., Sieber, S., Siebert, R., et al. (2012). Can farmers’ adaptation to climate change be explained by socio-economic household-level variables. Glob. Environ. Change, 22(1), 223–235.
Abstract: A better understanding of processes that shape farmers’ adaptation to climate change is critical to identify vulnerable entities and to develop well-targeted adaptation policies. However, it is currently poorly understood what determines farmers’ adaptation and how to measure it. In this study, we develop an activity-based adaptation index (AAI) and explore the relationship between socioeconomic variables and farmers’ adaptation behavior by means of an explanatory factor analysis and a multiple linear regression model using latent variables. The model was tested in six villages situated in two administrative wards in the Morogoro region of Tanzania. The Mlali ward represents a system of relatively high agricultural potential, whereas the Gairo ward represents a system of low agricultural potential. A household survey, a rapid rural appraisal and, a stakeholder workshop were used for data collection. The data were analyzed using factor analysis, multiple linear regression, descriptive statistical methods and qualitative content analysis. The empirical results are discussed in the context of theoretical concepts of adaptation and the sustainable livelihood approach. We found that public investment in rural infrastructure, in the availability and technically efficient use of inputs, in a good education system that provides equal chances for women, and in the strengthening of social capital, agricultural extension and, microcredit services are the best means of improving the adaptation of the farmers from the six villages in Gairo and Mlali. We conclude that the newly developed AAI is a simple but promising way to capture the complexity of adaptation processes that addresses a number of shortcomings of previous index studies.
|
|
|
Graef, F., Sieber, S., Mutabazi, K., Asch, F., Biesalski, H. K., Bitegeko, J., et al. (2014). Framework for participatory food security research in rural food value chains. Global Food Security, 3(1), 8–15.
Abstract: Enhancing food security for poor and vulnerable people requires adapting rural food systems to various driving factors. Food security-related research should apply participatory action research that considers the entire food value chain to ensure sustained success. This article presents a research framework that focusses on determining, prioritising, testing, adapting and disseminating food securing upgrading strategies across the multiple components of rural food value chains. These include natural resources, Food production, processing, markets, consumption and waste management. Scientists and policy makers jointly use tools developed for assessing potentials for enhancing regional food security at multiple spatial and temporal scales. The research is being conducted in Tanzania as a case study for Sub-Saharan countries and is done in close collaboration with local, regional and national stakeholders, encompassing all activities across all different food sectors. (C) 2014 Elsevier B.V. All rights reserved.
|
|
|
Vilvert, E., Lana, M., Zander, P., & Sieber, S. (2018). Multi-model approach for assessing the sunflower food value chain in Tanzania. Agric. Syst., 159, 103–110.
Abstract: Sunflower is one of the major oilseeds produced in Tanzania, but due to insufficient domestic production more than half of the country’s demand is imported. The improvement of the sunflower food value chain (FVC) understanding is important to ensure an increase in the production, availability, and quality of edible oil. In order to analyse causes and propose solutions to increase the production of sunflower oil, a conceptual framework that proposes the combined use of different models to provide insights about the sunflower FVC was developed. This research focus on the identification of agricultural models that can provide a better understanding of the sunflower FVC in Tanzania, especially within the context of food security improvement. A FVC scheme was designed considering the main steps of sunflower production. Thereafter, relevant models were selected and placed along each step of the FVC. As result, the sunflower FVC model in Tanzania is organized in five steps, namely (1) natural resources; (2) crop production; (3) oil processing; (4) trade; and (5) consumption. Step 1 uses environmental indicators to analyse soil parameters on soil-water models (SWAT, LPJmL, APSIM or CroSyst), with outputs providing data for step 2 of the FVC. In the production step, data from step 1, together with other inputs, is used to run crop models (DSSAT, HERMES, MONICA, STICS, EPIC or AquaCrop) that analyse the impact on sunflower yields. Thereafter, outputs from crop models serve as input for bio-economic farm models (FSSIM or MODAM) to estimate production costs and farm income by optimizing resource allocation planning for step 2. In addition, outputs from crop models are used as inputs for macro-economic models (GTAP, MAGNET or MagPie) by adjusting supply functions and environmental impacts within steps 3, 4, and 5. These models simulate supply and demand, including the processing of products to determine prices and trade volumes at market equilibrium. In turn, these data is used by bio-economic farm models to assess sunflower returns for different farm types and agro-environmental conditions. Due to the large variety of models, it is possible to assess significant parts of the FVC, reducing the need to make assumptions, while improving the understanding of the FVC.
|
|