|
Bellocchi, G., Rivington, M., Matthews, K., & Acutis, M. (2015). Deliberative processes for comprehensive evaluation of agroecological models. A review. Agron. Sust. Developm., 35(2), 589–605.
Abstract: The use of biophysical models in agroecology has increased in the last few decades for two main reasons: the need to formalize empirical knowledge and the need to disseminate model-based decision support for decision makers (such as farmers, advisors, and policy makers). The first has encouraged the development and use of mathematical models to enhance the efficiency of field research through extrapolation beyond the limits of site, season, and management. The second reflects the increasing need (by scientists, managers, and the public) for simulation experimentation to explore options and consequences, for example, future resource use efficiency (i.e., management in sustainable intensification), impacts of and adaptation to climate change, understanding market and policy responses to shocks initiated at a biophysical level under increasing demand, and limited supply capacity. Production concerns thus dominate most model applications, but there is a notable growing emphasis on environmental, economic, and policy dimensions. Identifying effective methods of assessing model quality and performance has become a challenging but vital imperative, considering the variety of factors influencing model outputs. Understanding the requirements of stakeholders, in respect of model use, logically implies the need for their inclusion in model evaluation methods. We reviewed the use of metrics of model evaluation, with a particular emphasis on the involvement of stakeholders to expand horizons beyond conventional structured, numeric analyses. Two major topics are discussed: (1) the importance of deliberative processes for model evaluation, and (2) the role computer-aided techniques may play to integrate deliberative processes into the evaluation of agroecological models. We point out that (i) the evaluation of agroecological models can be improved through stakeholder follow-up, which is a key for the acceptability of model realizations in practice, (ii) model credibility depends not only on the outcomes of well-structured, numerically based evaluation, but also on less tangible factors that may need to be addressed using complementary deliberative processes, (iii) comprehensive evaluation of simulation models can be achieved by integrating the expectations of stakeholders via a weighting system of preferences and perception, (iv) questionnaire-based surveys can help understand the challenges posed by the deliberative process, and (v) a benefit can be obtained if model evaluation is conceived in a decisional perspective and evaluation techniques are developed at the same pace with which the models themselves are created and improved. Scientific knowledge hubs are also recognized as critical pillars to advance good modeling practice in relation to model evaluation (including access to dedicated software tools), an activity which is frequently neglected in the context of time-limited framework programs.
|
|
|
Kipling, R. P., Bannink, A., Bellocchi, G., Dalgaard, T., Fox, N. J., Hutchings, N. J., et al. (2016). Modeling European ruminant production systems: Facing the challenges of climate change. Agricultural Systems, 147, 24–37.
Abstract: Ruminant production systems are important producers of food, support rural communities and culture, and help to maintain a range of ecosystem services including the sequestering of carbon in grassland soils. However, these systems also contribute significantly to climate change through greenhouse gas (GHG) emissions, while intensi- fication of production has driven biodiversity and nutrient loss, and soil degradation. Modeling can offer insights into the complexity underlying the relationships between climate change, management and policy choices, food production, and the maintenance of ecosystem services. This paper 1) provides an overview of how ruminant systems modeling supports the efforts of stakeholders and policymakers to predict, mitigate and adapt to climate change and 2) provides ideas for enhancing modeling to fulfil this role. Many grassland models can predict plant growth, yield and GHG emissions from mono-specific swards, but modeling multi-species swards, grassland quality and the impact of management changes requires further development. Current livestock models provide a good basis for predicting animal production; linking these with models of animal health and disease is a prior- ity. Farm-scale modeling provides tools for policymakers to predict the emissions of GHG and other pollutants from livestock farms, and to support the management decisions of farmers from environmental and economic standpoints. Other models focus on how policy and associated management changes affect a range of economic and environmental variables at regional, national and European scales. Models at larger scales generally utilise more empirical approaches than those applied at animal, field and farm-scales and include assumptions which may not be valid under climate change conditions. It is therefore important to continue to develop more realistic representations of processes in regional and global models, using the understanding gained from finer-scale modeling. An iterative process of model development, in which lessons learnt from mechanistic models are ap- plied to develop ‘smart’ empirical modeling, may overcome the trade-off between complexity and usability. De- veloping the modeling capacity to tackle the complex challenges related to climate change, is reliant on closer links between modelers and experimental researchers, and also requires knowledge-sharing and increasing technical compatibility across modeling disciplines. Stakeholder engagement throughout the process of model development and application is vital for the creation of relevant models, and important in reducing problems re- lated to the interpretation of modeling outcomes. Enabling modeling to meet the demands of policymakers and other stakeholders under climate change will require collaboration within adequately-resourced, long-term inter-disciplinary research networks
|
|
|
Mansouri, M., & Destain, M. - F. (2015). Predicting biomass and grain protein content using Bayesian methods. Stoch. Environ. Res. Risk Assess., 29(4), 1167–1177.
Abstract: This paper deals with the problem of predicting biomass and grain protein content using improved particle filtering (IPF) based on minimizing the Kullback-Leibler divergence. The performances of IPF are compared with those of the conventional particle filtering (PF) in two comparative studies. In the first one, we apply IPF and PF at a simple dynamic crop model with the aim to predict a single state variable, namely the winter wheat biomass, and to estimate several model parameters. In the second study, the proposed IPF and the PF are applied to a complex crop model (AZODYN) to predict a winter-wheat quality criterion, namely the grain protein content. The results of both comparative studies reveal that the IPF method provides a better estimation accuracy than the PF method. The benefit of the IPF method lies in its ability to provide accuracy related advantages over the PF method since, unlike the PF which depends on the choice of the sampling distribution used to estimate the posterior distribution, the IPF yields an optimum choice of this sampling distribution, which also utilizes the observed data. The performance of the proposed method is evaluated in terms of estimation accuracy, root mean square error, mean absolute error and execution times.
|
|
|
Rodriguez, A., Ruiz-Ramos, M., Palosuo, T., Carter, T. R., Fronzek, S., Lorite, I. J., et al. (2019). Implications of crop model ensemble size and composition for estimates of adaptation effects and agreement of recommendations. Agricultural and Forest Meteorology, 264, 351–362.
Abstract: unless local adaptation can ameliorate these impacts. Ensembles of crop simulation models can be useful tools for assessing if proposed adaptation options are capable of achieving target yields, whilst also quantifying the share of uncertainty in the simulated crop impact resulting from the crop models themselves. Although some studies have analysed the influence of ensemble size on model outcomes, the effect of ensemble composition has not yet been properly appraised. Moreover, results and derived recommendations typically rely on averaged ensemble simulation results without accounting sufficiently for the spread of model outcomes. Therefore, we developed an Ensemble Outcome Agreement (EOA) index, which analyses the effect of changes in composition and size of a multi-model ensemble (MME) to evaluate the level of agreement between MME outcomes with respect to a given hypothesis (e.g. that adaptation measures result in positive crop responses). We analysed the recommendations of a previous study performed with an ensemble of 17 crop models and testing 54 adaptation options for rainfed winter wheat (Triticum aestivwn L.) at Lleida (NE Spain) under perturbed conditions of temperature, precipitation and atmospheric CO2 concentration. Our results confirmed that most adaptations recommended in the previous study have a positive effect. However, we also showed that some options did not remain recommendable in specific conditions if different ensembles were considered. Using EOA, we were able to identify the adaptation options for which there is high confidence in their effectiveness at enhancing yields, even under severe climate perturbations. These include substituting spring wheat for winter wheat combined with earlier sowing dates and standard or longer duration cultivars, or introducing supplementary irrigation, the latter increasing EOA values in all cases. There is low confidence in recovering yields to baseline levels, although this target could be attained for some adaptation options under moderate climate perturbations. Recommendations derived from such robust results may provide crucial information for stakeholders seeking to implement adaptation measures.
|
|
|
Sieber, S., Amjath-Babu, T. S., McIntosh, B. S., Tscherning, K., Müller, K., Helming, K., et al. (2013). Evaluating the characteristics of a non-standardised Model Requirements Analysis (MRA) for the development of policy impact assessment tools. Env. Model. Softw., 49, 53–63.
Abstract: The aim of this paper is to provide a critical analysis of the strengths and weaknesses of a non-standardised Model Requirements Analysis (MRA) used for the purpose of developing the Sustainability Impact Assessment Tool (SIAT). By ‘non-standardised’ we mean not strictly following a published MRA method. The underlying question we are interested in addressing is how non-standardised methods, often employed in research driven projects, compare to defined methods with more standardised structure, with regards their ability to capture model requirements effectively, and with regards their overall usability. Through describing and critically assessing the specific features of the non-standardised MRA employed, the ambition of this paper is to provide insights useful for impact assessment tool (IAT) development. Specifically, the paper will (i) characterise kinds of user requirements relevant to the functionality and design of IATs; (ii) highlight the strengths and weaknesses of non-standardised MRA for user requirements capture, analysis and reflection in the context of IAT; (iii) critically reflect on the process and outcomes of having used a non-standardised MRA in comparison with other more standardised approaches. To accomplish these aims, we first review methods available for IAT development before describing the SIAT development process, including the MRA employed. Major strengths and weaknesses of the MRA method are then discussed in terms of user identification and characterisation, organisational characterisation and embedding, and ability to capture design options for ensuring usability and usefulness. A detailed assessment on the structural differences of MRA with two advanced approaches (Integrated DSS design and goal directed design) and their role in performance of the MRA tool is used to critique the approach employed. The results show that MRA is able to bring thematic integration, establish system performance and technical thresholds as well as detailing quality and transparency guidelines. Nevertheless the discussion points out to a number of deficiencies in application – (i) a need to more effectively characterise potential users, and; (ii) a need to better foster communication among the distinguished roles in the development process. If addressed these deficiencies, SIAT non-standardised MRA could have brought out better outcomes in terms of tool usability and usefulness, and improved embedding of the tool into conditions of targeted end-users. (C) 2013 Elsevier Ltd. All rights reserved.
|
|