|
Graß, R., Thies, B., Kersebaum, K. - C., & Wachendorf, M. (2015). Simulating dry matter yield of two cropping systems with the simulation model HERMES to evaluate impact of future climate change. European Journal of Agronomy, 70, 1–10.
Abstract: Regionalized model calculations showed increased rainfall and temperatures in winter and less precipitation and higher temperatures in summer due to climate change effects in the future for numerous countries in the northern hemisphere. Furthermore, model simulations predicted enhanced weather variability with an increased risk of yield losses and reduced yield stability. Recently, double cropping systems (DCS) were suggested as an environmental friendly and productive adaptation strategy with increased yield stability. This paper reviews the potential benefit of four DCS (rye (Secale cereale L.) as first crop and maize (Zea mays L.), sunflower (Helianthus annuus L.), sorghum (Sorghum sudanense L. x Sorghum bicolor L.) and sudan grass (S. sudanense L.) as second crops) in comparison with four conventional sole cropping systems (SCS) (maize, sunflower, sorghum and sudan grass) with regard to dry matter (DM) yield and soil water under conditions of climate change. We used the agro-ecosystem model HERMES for simulating these variables until the year 2100. The investigated crops sunflower, sorghum and sudan grass were parameterised first for HERMES achieving a satisfying performance. Results showed always higher DM yields per year of DCS compared with SCS. This was mainly caused by yield increases of the first crop winter rye harvested at the stage of milk ripeness. As a winter hardy crop, rye will benefit from increased precipitation and higher temperatures during winter months as well as from extended growth periods with an earlier onset in spring and an increase of growing days. Furthermore, rye is able to use the increased winter humidity for its spring growth in an efficient way. By contrast, model simulations showed that summer crops will be affected by reduced precipitation and higher temperatures during summer month for periods from 2050 onwards with the consequence of reduced yields. This yield reduction was found for all summer crops both in conventional sole crop and in DCS. Preponed harvesting of first crop winter rye as a consequence of earlier onset of growth period in spring under prospective climatic conditions lead to yield decrease, which could not be equalised by preponed sowing of second crops and extension of their growth period. Hence, total annual yield of both crops together decreased. The modification of sowing and harvesting dates as an adaptation strategy requires further research with the use of more holistic simulation models. To summarize, DCS may provide a promising adaptation strategy to effects of climate change with a substantial stabilisation of crop yields.
|
|
|
Vilvert, E., Lana, M., Zander, P., & Sieber, S. (2018). Multi-model approach for assessing the sunflower food value chain in Tanzania. Agric. Syst., 159, 103–110.
Abstract: Sunflower is one of the major oilseeds produced in Tanzania, but due to insufficient domestic production more than half of the country’s demand is imported. The improvement of the sunflower food value chain (FVC) understanding is important to ensure an increase in the production, availability, and quality of edible oil. In order to analyse causes and propose solutions to increase the production of sunflower oil, a conceptual framework that proposes the combined use of different models to provide insights about the sunflower FVC was developed. This research focus on the identification of agricultural models that can provide a better understanding of the sunflower FVC in Tanzania, especially within the context of food security improvement. A FVC scheme was designed considering the main steps of sunflower production. Thereafter, relevant models were selected and placed along each step of the FVC. As result, the sunflower FVC model in Tanzania is organized in five steps, namely (1) natural resources; (2) crop production; (3) oil processing; (4) trade; and (5) consumption. Step 1 uses environmental indicators to analyse soil parameters on soil-water models (SWAT, LPJmL, APSIM or CroSyst), with outputs providing data for step 2 of the FVC. In the production step, data from step 1, together with other inputs, is used to run crop models (DSSAT, HERMES, MONICA, STICS, EPIC or AquaCrop) that analyse the impact on sunflower yields. Thereafter, outputs from crop models serve as input for bio-economic farm models (FSSIM or MODAM) to estimate production costs and farm income by optimizing resource allocation planning for step 2. In addition, outputs from crop models are used as inputs for macro-economic models (GTAP, MAGNET or MagPie) by adjusting supply functions and environmental impacts within steps 3, 4, and 5. These models simulate supply and demand, including the processing of products to determine prices and trade volumes at market equilibrium. In turn, these data is used by bio-economic farm models to assess sunflower returns for different farm types and agro-environmental conditions. Due to the large variety of models, it is possible to assess significant parts of the FVC, reducing the need to make assumptions, while improving the understanding of the FVC.
|
|