|
Dumont, B., Leemans, V., Mansouri, M., Bodson, B., Destain, J. - P., & Destain, M. - F. (2014). Parameter identification of the STICS crop model, using an accelerated formal MCMC approach. Env. Model. Softw., 52, 121–135.
Abstract: This study presents a Bayesian approach for the parameters’ identification of the STICS crop model based on the recently developed Differential Evolution Adaptive Metropolis (DREAM) algorithm. The posterior distributions of nine specific crop parameters of the STICS model were sampled with the aim to improve the growth simulations of a winter wheat (Triticum aestivum L) culture. The results obtained with the DREAM algorithm were initially compared to those obtained with a Nelder-Mead Simplex algorithm embedded within the OptimiSTICS package. Then, three types of likelihood functions implemented within the DREAM algorithm were compared, namely the standard least square, the weighted least square, and a transformed likelihood function that makes explicit use of the coefficient of variation (CV). The results showed that the proposed CV likelihood function allowed taking into account both noise on measurements and heteroscedasticity which are regularly encountered in crop modelling. (C) 2013 Elsevier Ltd. All rights reserved.
|
|
|
Kraus, D., Weller, S., Klatt, S., Haas, E., Wassmann, R., Kiese, R., et al. (2015). A new LandscapeDNDC biogeochemical module to predict CH4 and N2O emissions from lowland rice and upland cropping systems. Plant Soil, 386(1-2), 125–149.
Abstract: Replacing paddy rice by upland systems such as maize cultivation is an on-going trend in SE Asia caused by increasing water scarcity and higher demand for meat. How such land management changes will feedback on soil C and N cycles and soil greenhouse gas emissions is not well understood at present. A new LandscapeDNDC biogeochemical module was developed that allows the effect of land management changes on soil C and N cycle to be simulated. The new module is applied in combination with further modules simulating microclimate and crop growth and evaluated against observations from field experiments. The model simulations agree well with observed dynamics of CH (4) emissions in paddy rice depending on changes in climatic conditions and agricultural management. Magnitude and peak emission periods of N (2) O from maize cultivation are simulated correctly, though there are still deficits in reproducing day-to-day dynamics. These shortcomings are most likely related to simulated soil hydrology and may only be resolved if LandscapeDNDC is coupled to more complex hydrological models. LandscapeDNDC allows for simulation of changing land management practices in SE Asia. The possibility to couple LandscapeDNDC to more complex hydrological models is a feature needed to better understand related effects on soil-atmosphere-hydrosphere interactions.
|
|