|
Castañeda-Vera, A., Leffelaar, P. A., Álvaro-Fuentes, J., Cantero-Martínez, C., & Mínguez, M. I. (2015). Selecting crop models for decision making in wheat insurance. European Journal of Agronomy, 68, 97–116.
Abstract: In crop insurance, the accuracy with which the insurer quantifies the actual risk is highly dependent on the availability on actual yield data. Crop models might be valuable tools to generate data on expected yields for risk assessment when no historical records are available. However, selecting a crop model for a specific objective, location and implementation scale is a difficult task. A look inside the different crop and soil modules to understand how outputs are obtained might facilitate model choice. The objectives of this paper were (i) to assess the usefulness of crop models to be used within a crop insurance analysis and design and (ii) to select the most suitable crop model for drought risk assessment in semi-arid regions in Spain. For that purpose first, a pre-selection of crop models simulating wheat yield under rainfed growing conditions at the field scale was made, and second, four selected models (Aquacrop, CERES-Wheat, CropSyst and WOFOST) were compared in terms of modelling approaches, process descriptions and model outputs. Outputs of the four models for the simulation of winter wheat growth are comparable when water is not limiting, but differences are larger when simulating yields under rainfed conditions. These differences in rainfed yields are mainly related to the dissimilar simulated soil water availability and the assumed linkages with dry matter formation. We concluded that for the simulation of winter wheat growth at field scale in such semi-arid conditions, CERES-Wheat and CropSyst are preferred. WOFOST is a satisfactory compromise between data availability and complexity when detail data on soil is limited. Aquacrop integrates physiological processes in some representative parameters, thus diminishing the number of input parameters, what is seen as an advantage when observed data is scarce. However, the high sensitivity of this model to low water availability limits its use in the region considered. Contrary to the use of ensembles of crop models, we endorse that efforts be concentrated on selecting or rebuilding a model that includes approaches that better describe the agronomic conditions of the regions in which they will be applied. The use of such complex methodologies as crop models is associated with numerous sources of uncertainty, although these models are the best tools available to get insight in these complex agronomic systems. (C) 2015 Elsevier B.V. All rights reserved.
|
|
|
Constantin, J., Raynal, H., Casellas, E., Hoffman, H., Bindi, M., Doro, L., et al. (2019). Management and spatial resolution effects on yield and water balance at regional scale in crop models. Agricultural and Forest Meteorology, 275, 184–195.
Abstract: Due to the more frequent use of crop models at regional and national scale, the effects of spatial data input resolution have gained increased attention. However, little is known about the influence of variability in crop management on model outputs. A constant and uniform crop management is often considered over the simulated area and period. This study determines the influence of crop management adapted to climatic conditions and input data resolution on regional-scale outputs of crop models. For this purpose, winter wheat and maize were simulated over 30 years with spatially and temporally uniform management or adaptive management for North Rhine-Westphalia ((similar to)34 083 km(2)), Germany. Adaptive management to local climatic conditions was used for 1) sowing date, 2) N fertilization dates, 3) N amounts, and 4) crop cycle length. Therefore, the models were applied with four different management sets for each crop. Input data for climate, soil and management were selected at five resolutions, from 1 x 1 km to 100 x 100 km grid size. Overall, 11 crop models were used to predict regional mean crop yield, actual evapotranspiration, and drainage. Adaptive management had little effect (< 10% difference) on the 30-year mean of the three output variables for most models and did not depend on soil, climate, and management resolution. Nevertheless, the effect was substantial for certain models, up to 31% on yield, 27% on evapotranspiration, and 12% on drainage compared to the uniform management reference. In general, effects were stronger on yield than on evapotranspiration and drainage, which had little sensitivity to changes in management. Scaling effects were generally lower than management effects on yield and evapotranspiration as opposed to drainage. Despite this trend, sensitivity to management and scaling varied greatly among the models. At the annual scale, effects were stronger in certain years, particularly the management effect on yield. These results imply that depending on the model, the representation of management should be carefully chosen, particularly when simulating yields and for predictions on annual scale.
|
|
|
Dockter, C., & Hansson, M. (2015). Improving barley culm robustness for secured crop yield in a changing climate. J. Experim. Bot., 66(12), 3499–3509.
Abstract: The Green Revolution combined advancements in breeding and agricultural practice, and provided food security to millions of people. Daily food supply is still a major issue in many parts of the world and is further challenged by future climate change. Fortunately, life science research is currently making huge progress, and the development of future crop plants will be explored. Today, plant breeding typically follows one gene per trait. However, new scientific achievements have revealed that many of these traits depend on different genes and complex interactions of proteins reacting to various external stimuli. These findings open up new possibilities for breeding where variations in several genes can be combined to enhance productivity and quality. In this review we present an overview of genes determining plant architecture in barley, with a special focus on culm length. Many genes are currently known only through their mutant phenotypes, but emerging genomic sequence information will accelerate their identification. More than 1000 different short-culm barley mutants have been isolated and classified in different phenotypic groups according to culm length and additional pleiotropic characters. Some mutants have been connected to deficiencies in biosynthesis and reception of brassinosteroids and gibberellic acids. Still other mutants are unlikely to be connected to these hormones. The genes and corresponding mutations are of potential interest for development of stiff-straw crop plants tolerant to lodging, which occurs in extreme weather conditions with strong winds and heavy precipitation.
|
|
|
Eyshi Rezaei, E., Siebert, S., & Ewert, F. (2015). Impact of data resolution on heat and drought stress simulated for winter wheat in Germany. European Journal of Agronomy, 65, 69–82.
Abstract: Heat and drought stress can reduce crop yields considerably which is increasingly assessed with crop models for larger areas. Applying these models originally developed for the field scale at large spatial extent typically implies the use of input data with coarse resolution. Little is known about the effect of data resolution on the simulated impact of extreme events like heat and drought on crops. Hence, in this study the effect of input and output data aggregation on simulated heat and drought stress and their impact on yield of winter wheat is systematically analyzed. The crop model SIMPLACE was applied for the period 1980-2011 across Germany at a resolution of 1 km x 1 km. Weather and soil input data and model output data were then aggregated to 10 km x 10 km, 25 km x 25 km, 50 km x 50 km and 100 km x 100 km resolution to analyze the aggregation effect on heat and drought stress and crop yield. We found that aggregation of model input and output data barely influenced the mean and median of heat and drought stress reduction factors and crop yields simulated across Germany. However, data aggregation resulted in less spatial variability of model results and a reduced severity of simulated stress events, particularly for regions with high heterogeneity in weather and soil conditions. Comparisons of simulations at coarse resolution with those at high resolution showed distinct patterns of positive and negative deviations which compensated each other so that aggregation effects for large regions were small for mean or median yields. Therefore, modelling at a resolution of 100 km x 100 km was sufficient to determine mean wheat yield as affected by heat and drought stress for Germany. Further research is required to clarify whether the results can be generalized across crop models differing in structure and detail. Attention should also be given to better understand the effect of data resolution on interactions between heat and drought impacts. (C) 2015 Elsevier B.V. All rights reserved.
|
|
|
Eyshi Rezaei, E., Webber, H., Gaiser, T., Naab, J., & Ewert, F. (2015). Heat stress in cereals: Mechanisms and modelling. European Journal of Agronomy, 64, 98–113.
Abstract: Increased climate variability and higher mean temperatures are expected across many world regions, both of which will contribute to more frequent extreme high temperatures events. Empirical evidence increasingly shows that short episodes of high temperature experienced around flowering can have large negative impacts on cereal grain yields, a phenomenon increasingly referred to as heat stress. Crop models are currently the best tools available to investigate how crops will grow under future climatic conditions, though the need to include heat stress effects has been recognized only relatively recently. We reviewed literature on both how key crop physiological processes and the observed yields under production conditions are impacted by high temperatures occurring particularly in the flowering and grain filling phases for wheat, maize and rice. This state of the art in crop response to heat stress was then contrasted with generic approaches to simulate the impacts of high temperatures in crop growth models. We found that the observed impacts of heat stress on crop yield are the end result of the integration of many processes, not all of which will be affected by a “high temperature” regime. This complexity confirms an important role for crop models in systematizing the effects of high temperatures on many processes under a range of environments and realizations of crop phenology. Four generic approaches to simulate high temperature impacts on yield were identified: (1) empirical reduction of final yield, (2) empirical reduction in daily increment in harvest index, (3) empirical reduction in grain number, and (4) semi-deterministic models of sink and source limitation. Consideration of canopy temperature is suggested as a promising approach to concurrently account for heat and drought stress, which are likely to occur simultaneously. Improving crop models’ response to high temperature impacts on cereal yields will require experimental data representative of field production and should be designed to connect what is already known about physiological responses and observed yield impacts. (C) 2014 Elsevier B.V. All rights reserved.
|
|