|
Castañeda-Vera, A., Leffelaar, P. A., Álvaro-Fuentes, J., Cantero-Martínez, C., & Mínguez, M. I. (2015). Selecting crop models for decision making in wheat insurance. European Journal of Agronomy, 68, 97–116.
Abstract: In crop insurance, the accuracy with which the insurer quantifies the actual risk is highly dependent on the availability on actual yield data. Crop models might be valuable tools to generate data on expected yields for risk assessment when no historical records are available. However, selecting a crop model for a specific objective, location and implementation scale is a difficult task. A look inside the different crop and soil modules to understand how outputs are obtained might facilitate model choice. The objectives of this paper were (i) to assess the usefulness of crop models to be used within a crop insurance analysis and design and (ii) to select the most suitable crop model for drought risk assessment in semi-arid regions in Spain. For that purpose first, a pre-selection of crop models simulating wheat yield under rainfed growing conditions at the field scale was made, and second, four selected models (Aquacrop, CERES-Wheat, CropSyst and WOFOST) were compared in terms of modelling approaches, process descriptions and model outputs. Outputs of the four models for the simulation of winter wheat growth are comparable when water is not limiting, but differences are larger when simulating yields under rainfed conditions. These differences in rainfed yields are mainly related to the dissimilar simulated soil water availability and the assumed linkages with dry matter formation. We concluded that for the simulation of winter wheat growth at field scale in such semi-arid conditions, CERES-Wheat and CropSyst are preferred. WOFOST is a satisfactory compromise between data availability and complexity when detail data on soil is limited. Aquacrop integrates physiological processes in some representative parameters, thus diminishing the number of input parameters, what is seen as an advantage when observed data is scarce. However, the high sensitivity of this model to low water availability limits its use in the region considered. Contrary to the use of ensembles of crop models, we endorse that efforts be concentrated on selecting or rebuilding a model that includes approaches that better describe the agronomic conditions of the regions in which they will be applied. The use of such complex methodologies as crop models is associated with numerous sources of uncertainty, although these models are the best tools available to get insight in these complex agronomic systems. (C) 2015 Elsevier B.V. All rights reserved.
|
|
|
Conradt, T., Wechsung, F., & Bronstert, A. (2013). Three perceptions of the evapotranspiration landscape: comparing spatial patterns from a distributed hydrological model, remotely sensed surface temperatures, and sub-basin water balances. Hydrol. Earth System Sci., 17(7), 2947–2966.
Abstract: A problem encountered by many distributed hydrological modelling studies is high simulation errors at interior gauges when the model is only globally calibrated at the outlet. We simulated river runoff in the Elbe River basin in central Europe (148 268 km(2)) with the semi-distributed eco-hydrological model SWIM (Soil and Water Integrated Model). While global parameter optimisation led to Nash-Sutcliffe efficiencies of 0.9 at the main outlet gauge, comparisons with measured runoff series at interior points revealed large deviations. Therefore, we compared three different strategies for deriving sub-basin evapotranspiration: (1) modelled by SWIM without any spatial calibration, (2) derived from remotely sensed surface temperatures, and (3) calculated from long-term precipitation and discharge data. The results show certain consistencies between the modelled and the remote sensing based evapotranspiration rates, but there seems to be no correlation between remote sensing and water balance based estimations. Subsequent analyses for single sub-basins identify amongst others input weather data and systematic error amplification in inter-gauge discharge calculations as sources of uncertainty. The results encourage careful utilisation of different data sources for enhancements in distributed hydrological modelling.
|
|
|
Coucheney, E., Buis, S., Launay, M., Constantin, J., Mary, B., García de Cortázar-Atauri, I., et al. (2015). Accuracy, robustness and behavior of the STICS soil–crop model for plant, water and nitrogen outputs: Evaluation over a wide range of agro-environmental conditions in France. Env. Model. Softw., 64, 177–190.
Abstract: Soil-crop models are increasingly used as predictive tools to assess yield and environmental impacts of agriculture in a growing diversity of contexts. They are however seldom evaluated at a given time over a wide domain of use. We tested here the performances of the STICS model (v8.2.2) with its standard set of parameters over a dataset covering 15 crops and a wide range of agropedoclimatic conditions in France. Model results showed a good overall accuracy, with little bias. Relative RMSE was larger for soil nitrate (49%) than for plant biomass (35%) and nitrogen (33%) and smallest for soil water (10%). Trends induced by contrasted environmental conditions and management practices were well reproduced. Finally, limited dependency of model errors on crops or environments indicated a satisfactory robustness. Such performances make STICS a valuable tool for studying the effects of changes in agro-ecosystems over the domain explored. (C) 2014 Elsevier Ltd. All rights reserved.
|
|
|
Dáder, B., Gwynn-Jones, D., Moreno, A., Winters, A., & Fereres, A. (2014). Impact of UV-A radiation on the performance of aphids and whiteflies and on the leaf chemistry of their host plants. J. Photochem. Photobiol. B, 138, 307–316.
Abstract: Ultraviolet (UV) radiation directly regulates a multitude of herbivore life processes, in addition to indirectly affecting insect success via changes in plant chemistry and morphogenesis. Here we looked at plant and insect (aphid and whitefly) exposure to supplemental UV-A radiation in the glasshouse environment and investigated effects on insect population growth. Glasshouse grown peppers and eggplants were grown from seed inside cages covered by novel plastic filters, one transparent and the other opaque to UV-A radiation. At a 10-true leaf stage for peppers (53 days) and 4-true leaf stage for eggplants (34 days), plants were harvested for chemical analysis and infested by aphids and whiteflies, respectively. Clip-cages were used to introduce and monitor the insect fitness and populations of the pests studied. Insect pre-reproductive period, fecundity, fertility and intrinsic rate of natural increase were assessed. Crop growth was monitored weekly for 7 and 12 weeks throughout the crop cycle of peppers and eggplants, respectively. At the end of the insect fitness experiment, plants were harvested (68 days and 18-true leaf stage for peppers, and 104 days and 12-true leaf stage for eggplants) and leaves analysed for secondary metabolites, soluble carbohydrates, amino acids, total proteins and photosynthetic pigments. Our results demonstrate for the first time, that UV-A modulates plant chemistry with implications for insect pests. Both plant species responded directly to UV-A by producing shorter stems but this effect was only significant in pepper whilst UV-A did not affect the leaf area of either species. Importantly, in pepper, the UV-A treated plants contained higher contents of secondary metabolites, leaf soluble carbohydrates, free amino acids and total content of protein. Such changes in tissue chemistry may have indirectly promoted aphid performance. For eggplants, chlorophylls a and b, and carotenoid levels decreased with supplemental UV-A over the entire crop cycle but UV-A exposure did not affect leaf secondary metabolites. However, exposure to supplemental UV-A had a detrimental effect on whitefly development, fecundity and fertility presumably not mediated by plant cues as compounds implied in pest nutrition – proteins and sugars – were unaltered.
|
|
|
Eza, U., Shtiliyanova, A., Borras, D., Bellocchi, G., Carrère, P., & Martin, R. (2015). An open platform to assess vulnerabilities to climate change: An application to agricultural systems. Ecological Informatics, 30, 389–396.
Abstract: Numerous climate futures are now available from global climate models. Translation of climate data such as precipitation and temperatures into ecologically meaningful outputs for managers and planners is the next frontier. We describe a model-based open platform to assess vulnerabilities of agricultural systems to climate change on pixel-wise data. The platform includes a simulation modeling engine and is suited to work with NetCDF format of input and output files. In a case study covering a region (Auvergne) in the Massif Central of France, the platform is configured to characterize climate (occurrence of arid conditions in historical and projected climate records), soils and human management, and is then used to assess the vulnerability to climate change of grassland productivity (downscaled to a fine scale). We demonstrate how using climate time series, and process-based simulations vulnerabilities can be defined at fine spatial scales relevant to farmers and land managers, and can be incorporated into management frameworks. (C) 2015 Elsevier B.V. All rights reserved.
|
|