|
Bellocchi, G., Rivington, M., Matthews, K., & Acutis, M. (2015). Deliberative processes for comprehensive evaluation of agroecological models. A review. Agron. Sust. Developm., 35(2), 589–605.
Abstract: The use of biophysical models in agroecology has increased in the last few decades for two main reasons: the need to formalize empirical knowledge and the need to disseminate model-based decision support for decision makers (such as farmers, advisors, and policy makers). The first has encouraged the development and use of mathematical models to enhance the efficiency of field research through extrapolation beyond the limits of site, season, and management. The second reflects the increasing need (by scientists, managers, and the public) for simulation experimentation to explore options and consequences, for example, future resource use efficiency (i.e., management in sustainable intensification), impacts of and adaptation to climate change, understanding market and policy responses to shocks initiated at a biophysical level under increasing demand, and limited supply capacity. Production concerns thus dominate most model applications, but there is a notable growing emphasis on environmental, economic, and policy dimensions. Identifying effective methods of assessing model quality and performance has become a challenging but vital imperative, considering the variety of factors influencing model outputs. Understanding the requirements of stakeholders, in respect of model use, logically implies the need for their inclusion in model evaluation methods. We reviewed the use of metrics of model evaluation, with a particular emphasis on the involvement of stakeholders to expand horizons beyond conventional structured, numeric analyses. Two major topics are discussed: (1) the importance of deliberative processes for model evaluation, and (2) the role computer-aided techniques may play to integrate deliberative processes into the evaluation of agroecological models. We point out that (i) the evaluation of agroecological models can be improved through stakeholder follow-up, which is a key for the acceptability of model realizations in practice, (ii) model credibility depends not only on the outcomes of well-structured, numerically based evaluation, but also on less tangible factors that may need to be addressed using complementary deliberative processes, (iii) comprehensive evaluation of simulation models can be achieved by integrating the expectations of stakeholders via a weighting system of preferences and perception, (iv) questionnaire-based surveys can help understand the challenges posed by the deliberative process, and (v) a benefit can be obtained if model evaluation is conceived in a decisional perspective and evaluation techniques are developed at the same pace with which the models themselves are created and improved. Scientific knowledge hubs are also recognized as critical pillars to advance good modeling practice in relation to model evaluation (including access to dedicated software tools), an activity which is frequently neglected in the context of time-limited framework programs.
|
|
|
Bourgeois, C., Fradj, N. B., & Jayet, P. - A. (2014). How cost-effective is a mixed policy targeting the management of three agricultural N-pollutants. Environmental Modelling & Assessment, 19(5), 389–405.
Abstract: This paper assesses the cost-effectiveness of a mixed policy in attempts to reduce the presence of three nitrogen pollutants: NO (3), N O-2, and NH (3). The policy under study combines a tax on nitrogen input and incentives promoting perennial crops assumed to require low input. We show that the mixed policy improves the cost-effectiveness of regulation with regard to nitrates, whereas no improvement occurs, except for a very low level of subsidy in some cases, for gas pollutants. A quantitative analysis provides an assessment of impacts in terms of land use, farmers’ income, and nitrogen losses throughout France and at river-basin scale.
|
|
|
Cortignani, R., & Dono, G. (2015). Simulation of the impact of greening measures in an agricultural area of the southern Italy. Land Use Policy, 48, 525–533.
Abstract: Together, sustainable management of natural resources and climate action form one of the three objectives of the 2014-2020 Common Agricultural Policy. This objective is being addressed by replacing the existing direct payments under Pillar 1 with a basic payment, combined with an additional payment conditional on farmers undertaking agricultural practices beneficial for the climate and the environment, a policy referred to as greening. In this study, the impact of greening was assessed using a hybrid model calibrated using positive mathematical programming. The model describes the macro-types of farm production in a Mediterranean agricultural area. The results show that greening was not beneficial throughout the study area and only some farm types have been particularly affected. However, greening appears to have a positive impact on curtailing the use of chemicals, particularly nitrogen, and on crop diversity. (C) 2015 Elsevier Ltd. All rights reserved.
|
|
|
Dono, G., Cortignani, R., Dell’Unto, D., Deligios, P., Doro, L., Lacetera, N., et al. (2016). Winners and losers from climate change in agriculture: Insights from a case study in the Mediterranean basin. Agricultural Systems, 147, 65–75.
Abstract: The Mediterranean region has always shown a marked inter-annual variability in seasonal weather, creating uncertainty in decisional processes of cultivation and livestock breeding that should not be neglected when modeling farmers’ adaptive responses. This is especially relevant when assessing the impact of climate change (CC), which modifies the atmospheric variability and generates new uncertainty conditions, and the possibility of adaptation of agriculture. Our analysis examines this aspect reconstructing the effects of inter-annual climate variability in a diversified farming district that well represents a wide range of rainfed and irrigated agricultural systems in the Mediterranean area. We used a Regional Atmospheric Modelling System and a weather generator to generate 150 stochastic years of the present and near future climate. Then, we implemented calibrated crop and livestock models to estimate the corresponding productive responses in the form of probability distribution functions (PDFs) under the two climatic conditions. We assumed these PDFs able to represent the expectations of farmers in a discrete stochastic programming (DSP) model that reproduced their economic behaviour under uncertainty conditions. The comparison of the results in the two scenarios provided an assessment of the impact of CC, also taking into account the possibility of adjustment allowed by present technologies and price regimes. The DSP model is built in blocks that represent the farm typologies operating in the study area, each one with its own resource endowment, decisional constraints and economic response. Under this latter aspect, major differences emerged among farm typologies and sub-zones of the study area. A crucial element of differentiation was water availability, since only irrigated C3 crops took full advantage from the fertilization effect of increasing atmospheric CO2 concentration. Rainfed crop production was depressed by the expected reduction of spring rainfall associated to the higher temperatures. So, a dualism emerges between the smaller impact on crop production in the irrigated plain sub-zone, equipped with collective water networks and abundant irrigation resources, and the major negative impact in the hilly area, where these facilities and resources are absent. However intensive dairy farming was also negatively affected in terms of milk production and quality, and cattle mortality because of the increasing summer temperatures. This provides explicit guidance for addressing strategic adaptation policies and for framing farmers’ perception of CC, in order to help them to develop an awareness of the phenomena that are already in progress, which is a prerequisite for effective adaptation responses.
|
|
|
Dono, G., Cortignani, R., Doro, L., Giraldo, L., Ledda, L., Pasqui, M., et al. (2013). An integrated assessment of the impacts of changing climate variability on agricultural productivity and profitability in an irrigated Mediterranean catchment. Water Resource Manage., 27(10), 3607–3622.
Abstract: Climate change is likely to have a profound effect on many agricultural variables, although the extent of its influence will vary over the course of the annual farm management cycle. Consequently, the effect of different and interconnected physical, technical and economic factors must be modeled in order to estimate the effects of climate change on agricultural productivity. Such modeling commonly makes use of indicators that summarize the among environmental factors that are considered when farmers plan their activities. This study uses net evapotranspiration (ETN), estimated using EPIC, as a proxy index for the physical factors considered by farmers when managing irrigation. Recent trends suggest that the probability distribution function of ETN may continue to change in the near future due to changes in the irrigation needs of crops. Also, water availability may continue to vary due to changes in the rainfall regime. The impacts of the uncertainties related to these changes on costs are evaluated using a Discrete Stochastic Programming model representing an irrigable Mediterranean area where limited water is supplied from a reservoir. In this context, adaptation to climate change can be best supported by improvements to the collective irrigation systems, rather than by measures aimed at individual farms such as those contained within the rural development policy.
|
|