|
Andreoli, V., Cassardo, C., Iacona, L. T., & Spanna, F. (2019). Description and Preliminary Simulations with the Italian Vineyard Integrated Numerical Model for Estimating Physiological Values (IVINE). Agronomy, 9(2).
Abstract: The numerical crop growth model Italian Vineyard Integrated Numerical model for Estimating physiological values (IVINE) was developed in order to evaluate environmental forcing effects on vine growth. The IVINE model simulates vine growth processes with parameterizations, allowing the understanding of plant conditions at a vineyard scale. It requires a set of meteorology data and soil water status as boundary conditions. The primary model outputs are main phenological stages, leaf development, yield, and sugar concentration. The model requires setting some variety information depending on the cultivar: At present, IVINE is optimized for Vitis vinifera L. Nebbiolo, a variety grown mostly in the Piedmont region (northwestern Italy). In order to evaluate the model accuracy, IVINE was validated using experimental observations gathered in Piedmontese vineyards, showing performances similar or slightly better than those of other widely used crop models. The results of a sensitivity analysis performed to highlight the effects of the variations of air temperature and soil water potential input variables on IVINE outputs showed that most phenological stages anticipated with increasing temperatures, while berry sugar content saturated at about 25.5 °Bx. Long-term (60 years, in the period 1950–2009) simulations performed over a Piedmontese subregion showed statistically significant variations of most IVINE output variables, with larger time trend slopes referring to the most recent 30-year period (1980–2009), thus confirming that ongoing climate change started influencing Piedmontese vineyards in 1980.
|
|
|
Cassardo, C., & Andreoli, V. (2019). On the Representativeness of UTOPIA Land Surface Model for Creating a Database of Surface Layer, Vegetation and Soil Variables in Piedmont Vineyards, Italy. Applied Sciences-Basel, 9(18), 3880.
Abstract: The main aim of the paper is to show how, and how many, simulations carried out using the Land Surface Model UTOPIA (University of TOrino model of land Process Interaction with Atmosphere) are representative of the micro-meteorological conditions and exchange processes at the atmosphere/biosphere interface, with a particular focus on heat and hydrologic transfers, over an area of the Piemonte (Piedmont) region, NW Italy, which is characterized by the presence of many vineyards. Another equally important aim is to understand how much the quality of the simulation outputs was influenced by the input data, whose measurements are often unavailable for long periods over country areas at an hourly basis. Three types of forcing data were used: observations from an experimental campaign carried out during the 2008, 2009, and 2010 vegetative seasons in three vineyards, and values extracted from the freely available Global Land Data Assimilation System (GLDAS, versions 2.0 and 2.1). Since GLDAS also contains the outputs of the simulations performed using the Land Surface Model NOAH, an additional intercomparison between the two models, UTOPIA and NOAH, both driven by the same GLDAS datasets, was performed. The intercomparisons were performed on the following micro-meteorological variables: net radiation, sensible and latent turbulent heat fluxes, and temperature and humidity of soil. The results of this study indicate that the methodology of employing land surface models driven by a gridded database to evaluate variables of micro-meteorological and agronomic interest in the absence of observations is suitable and gives satisfactory results, with uncertainties comparable to measurement errors, thus, allowing us to also evaluate some time trends. The comparison between GLDAS2.0 and GLDAS2.1 indicates that the latter generally produces simulation outputs more similar to the observations than the former, using both UTOPIA and NOAH models.
|
|
|
Lizaso, J. I., Ruiz-Ramos, M., Rodriguez, L., Gabaldon-Leal, C., Oliveira, J. A., Lorite, I. J., et al. (2017). Modeling the response of maize phenology, kernel set, and yield components to heat stress and heat shock with CSM-IXIM. Field Crops Research, 214, 239–252.
Abstract: The available evidence suggests that the current increasing trend in global surface temperatures will continue during this century, which will be accompanied by a greater frequency of extreme events. The IPCC has projected that higher temperatures may outscore the known optimal and maximum temperatures for maize. The purpose of this study was to improve the ability of the maize model CSM-IXIM to simulate crop development, growth, and yield under hot conditions, especially with regards to the impact of above-optimal temperatures around anthesis. Field and greenhouse experiments that were performed over three years (2014-2016) using the same short-season hybrid, PR37N01 (FAO 300), provided the data for this work. Maize was sown at a target population density of 5 plants M-2 on two sowing dates in 2014 and 2015 and on one in 2016 at three locations in Spain (northern, central, and southern Spain) with a well-defined thermal gradient. The same hybrid was also sown in two greenhouse chambers with daytime target temperatures of approximately 25 and above 35 degrees C. During the nighttime, the temperature in both chambers was allowed to equilibrate with the outside temperature. The greenhouse treatments consisted of moving 18 plants at selected phenological stages (V4, V9, anthesis, lag phase, early grain filling) from the cool chamber to the hot chamber over a week and then returning the plants back to the cool chamber. An additional control treatment remained in the cool chamber all season, and in 2015 and 2016, one treatment remained permanently in the hot chamber. Two maize models in the Decision Support System for Agrotechnology Transfer (DSSAT) V4.6 were compared, namely CERES and IXIM. The HUM version included additional components that were previously developed to improve the crop N simulation and to incorporate the anthesis-silking interval (ASI). A new thermal time calculation, a heat stress index, the impact of pollen-sterilizing temperatures, and the explicit simulation of male and female flowering as affected by the daily heat conditions were added to IXIM. The phenology simulation in field experiments by IXIM improved substantially. The RMSE for silking and maturity in CERES were 7.9 and 13.7 days, decreasing in DCIM to 2.8 and 7.3 days, respectively. Similarly, the estimated kernel numbers, kernel weight, grain yield and final biomass were always closer to the measurements in HUM than in CERES. The worst simulations were for kernel weight, and for that reason, the differences in grain yield between the models were small (the RMSE in CERES was 1219 kg ha(-1) vs. 1082 kg ha(-1) in IXIM). The greenhouse results also supported the improved estimations of crop development by IXIM (RMSE of 2.6 days) relative to CERES (7.4 days). The impact of the heat treatments on grain yield was consistently overestimated by CERES, while HUM captured the general trend. The new HUM model improved the CERES simulations when elevated temperatures were included in the evaluation data. Additional model testing with measurements from a wider latitudinal range and relevant heat conditions are required.
|
|
|
Sándor, R., Barcza, Z., Acutis, M., Doro, L., Hidy, D., Köchy, M., et al. (2016). Multi-model simulation of soil temperature, soil water content and biomass in Euro-Mediterranean grasslands: Uncertainties and ensemble performance. European Journal of Agronomy, .
Abstract: • We simulate biomass, soil water content (SWC) and temperature (ST) in grasslands. • We compare nine models to the multi-model median (MMM) at nine sites. • With model calibration, we obtain satisfactory estimates of ST, less of SWC and biomass. • We observe discrepancies across models in the simulation of grassland processes. • We improve performance with multi-model approach. This study presents results from a major grassland model intercomparison exercise, and highlights the main challenges faced in the implementation of a multi-model ensemble prediction system in grasslands. Nine, independently developed simulation models linking climate, soil, vegetation and management to grassland biogeochemical cycles and production were compared in a simulation of soil water content (SWC) and soil temperature (ST) in the topsoil, and of biomass production. The results were assessed against SWC and ST data from five observational grassland sites representing a range of conditions – Grillenburg in Germany, Laqueuille in France with both extensive and intensive management, Monte Bondone in Italy and Oensingen in Switzerland – and against yield measurements from the same sites and other experimental grassland sites in Europe and Israel. We present a comparison of model estimates from individual models to the multi-model ensemble (represented by multi-model median: MMM). With calibration (seven out of nine models), the performances were acceptable for weekly-aggregated ST (R² > 0.7 with individual models and >0.8–0.9 with MMM), but less satisfactory with SWC (R² < 0.6 with individual models and < ∼ 0.5 with MMM) and biomass (R² < ∼0.3 with both individual models and MMM). With individual models, maximum biases of about −5 °C for ST, −0.3 m3 m−3 for SWC and 360 g DM m−2 for yield, as well as negative modelling efficiencies and some high relative root mean square errors indicate low model performance, especially for biomass. We also found substantial discrepancies across different models, indicating considerable uncertainties regarding the simulation of grassland processes. The multi-model approach allowed for improved performance, but further progress is strongly needed in the way models represent processes in managed grassland systems.
|
|