|
Kersebaum, K. C., & Nendel, C. (2014). Site-specific impacts of climate change on wheat production across regions of Germany using different CO2 response functions. European Journal of Agronomy, 52, 22–32.
Abstract: Impact of climate change on crop growth, groundwater recharge and nitrogen leaching in winter wheat production in Germany was assessed using the agro-ecosystem model HERMES with a downscaled (WETTREG) climate change scenario A1B from the ECHAM5 global circulation model. Three alternative algorithms describing the impact of atmospheric CO2 concentration on crop growth (a simple Farquhar-type algorithm, a combined light-use efficiency – maximum assimilation approach and a simple scaling of the maximum assimilation rate) in combination with a Penman-Monteith approach which includes a simple stomata conduction model for evapotranspiration under changing CO2 concentrations were compared within the framework of the HERMES model. The effect of differences in regional climate change, site conditions and different CO2 algorithms on winter wheat yield, groundwater recharge and nitrogen leaching was assessed in 22 regional simulation case studies across Germany. Results indicate that the effects of climate change on wheat production will vary across Germany due to different regional expressions of climate change projection. Predicted yield changes between the reference period (1961-1990) and a future period (2021-2050) range from -0.4 t ha(-1), -0.8 t ha(-1) and -0.6 t ha(-1) at sites in southern Germany to +0.8 t ha(-1), +0.6 t ha(-1) and +0.8 t ha(-1) at coastal regions for the three CO2 algorithms, respectively. On average across all regions, a relative yield change of +0.9%, +3.0%, and +6.0%, respectively, was predicted for Germany. In contrast, a decrease of -11.6% was predicted without the consideration of a CO2 effect. However, simulated yield changes differed even within regions as site conditions had a strong influence on crop growth. Particularly, groundwater-affected sites showed a lower vulnerability to increasing drought risk. Groundwater recharge was estimated to change correspondingly to changes in precipitation. The consideration of the CO2 effect on transpiration in the model led to a prediction of higher rates of annual deep percolation (+16 mm on average across all sites), which was due to higher water-use efficiency of the crops. In contrast to groundwater recharge, simulated nitrogen leaching varied with the choice of the photosynthesis algorithm, predicting a slight reduction in most of the areas. The results underline the necessity of high-resolution data for model-based regional climate change impact assessment and development of adaptation measures. (C) 2013 Elsevier B.V. All rights reserved.
|
|
|
Shrestha, S., Abdalla, M., Hennessy, T., Forristal, D., & Jones, M. B. (2015). Irish farms under climate change – is there a regional variation on farm responses? J. Agric. Sci., 153(03), 385–398.
Abstract: The current paper aims to determine regional impacts of climate change on Irish farms examining the variation in farm responses. A set of crop growth models were used to determine crop and grass yields under a baseline scenario and a future climate scenario. These crop and grass yields were used along with farm-level data taken from the Irish National Farm Survey in an optimizing farm-level (farm-level linear programming) model, which maximizes farm profits under limiting resources. A change in farm net margins under the climate change scenario compared to the baseline scenario was taken as a measure to determine the effect of climate change on farms. The growth models suggested a decrease in cereal crop yields (up to 9%) but substantial increase in yields of forage maize (up to 97%) and grass (up to 56%) in all regions. Farms in the border, midlands and south-east regions suffered, whereas farms in all other regions generally fared better under the climate change scenario used in the current study. The results suggest that there is a regional variability between farms in their responses to the climate change scenario. Although substituting concentrate feed with grass feeds is the main adaptation on all livestock farms, the extent of such substitution differs between farms in different regions. For example, large dairy farms in the south-east region adopted total substitution of concentrate feed while similar dairy farms in the south-west region opted to replace only 0.30 of concentrate feed. Farms in most of the regions benefitted from increasing stocking rate, except for sheep farms in the border and dairy farms in the south-east regions. The tillage farms in the mid-east region responded to the climate change scenario by shifting arable production to beef production on farms.
|
|
|
van Bussel, L. G. J., Ewert, F., Zhao, G., Hoffmann, H., Enders, A., Wallach, D., et al. (2016). Spatial sampling of weather data for regional crop yield simulations. Agricultural and Forest Meteorology, 220, 101–115.
Abstract: Field-scale crop models are increasingly applied at spatio-temporal scales that range from regions to the globe and from decades up to 100 years. Sufficiently detailed data to capture the prevailing spatio-temporal heterogeneity in weather, soil, and management conditions as needed by crop models are rarely available. Effective sampling may overcome the problem of missing data but has rarely been investigated. In this study the effect of sampling weather data has been evaluated for simulating yields of winter wheat in a region in Germany over a 30-year period (1982-2011) using 12 process-based crop models. A stratified sampling was applied to compare the effect of different sizes of spatially sampled weather data (10, 30, 50,100, 500, 1000 and full coverage of 34,078 sampling points) on simulated wheat yields. Stratified sampling was further compared with random sampling. Possible interactions between sample size and crop model were evaluated. The results showed differences in simulated yields among crop models but all models reproduced well the pattern of the stratification. Importantly, the regional mean of simulated yields based on full coverage could already be reproduced by a small sample of 10 points. This was also true for reproducing the temporal variability in simulated yields but more sampling points (about 100) were required to accurately reproduce spatial yield variability. The number of sampling points can be smaller when a stratified sampling is applied as compared to a random sampling. However, differences between crop models were observed including some interaction between the effect of sampling on simulated yields and the model used. We concluded that stratified sampling can considerably reduce the number of required simulations. But, differences between crop models must be considered as the choice for a specific model can have larger effects on simulated yields than the sampling strategy. Assessing the impact of sampling soil and crop management data for regional simulations of crop yields is still needed.
|
|