|
Waha, K., Müller, C., & Rolinski, S. (2013). Separate and combined effects of temperature and precipitation change on maize yields in sub-Saharan Africa for mid- to late-21st century. Global and Planetary Change, 106, 1–12.
Abstract: Maize (Zea mays L) is one of the most important food crops and very common in all parts of sub-Saharan Africa. In 2010 53 million tons of maize were produced in sub-Saharan Africa on about one third of the total harvested cropland area (similar to 33 million ha). Our aim is to identify the limiting agroclimatic variable for maize growth and development in sub-Saharan Africa by analyzing the separated and combined effects of temperature and precipitation. Under changing climate, both climate variables are projected to change severely, and their impacts on crop yields are frequently assessed using process-based crop models. However it is often unclear which agroclimatic variable will have the strongest influence on crop growth and development under climate change and previous studies disagree over this question. We create synthetic climate data in order to study the effect of large changes in the length of the wet season and the amount of precipitation during the wet season both separately and in combination with changes in temperature. The dynamic global vegetation model for managed land LPJmL is used to simulate maize yields under current and future climatic conditions for the two 10-year periods 2056-2065 and 2081-2090 for three climate scenarios for the A1b emission scenario but without considering the beneficial CO2 fertilization effect. The importance of temperature and precipitation effects on maize yields varies spatially and we identify four groups of crop yield changes: regions with strong negative effects resulting from climate change (<-33% yield change), regions with moderate (-33% to -10% yield change) or slight negative effects (-10% to +6% yield change), and regions with positive effects arising from climate change mainly in currently temperature-limited high altitudes (>+6% yield change). In the first three groups temperature increases lead to maize yield reductions of 3 to 20%, with the exception of mountainous and thus cooler regions in South and East Africa. A reduction of the wet season precipitation causes decreases in maize yield of at least 30% and prevails over the effect of increased temperatures in southern parts of Mozambique and Zambia, the Sahel and parts of eastern Africa in the two projection periods. This knowledge about the limiting abiotic stress factor in each region will help to prioritize future research needs in modeling of agricultural systems as well as in drought and heat stress breeding programs and to identify adaption options in agricultural development projects. On the other hand the study enhances the understanding of temperature and water stress effects on crop yields in a global vegetation model in order to identify future research and model development needs. (C) 2013 Elsevier B.V. All rights reserved.
|
|
|
Zhao, G., Hoffmann, H., van Bussel, L. G. J., Enders, A., Specka, X., Sosa, C., et al. (2015). Effect of weather data aggregation on regional crop simulation for different crops, production conditions, and response variables. Clim. Res., 65, 141–157.
Abstract: We assessed the weather data aggregation effect (DAE) on the simulation of cropping systems for different crops, response variables, and production conditions. Using 13 process-based crop models and the ensemble mean, we simulated 30 yr continuous cropping systems for 2 crops (winter wheat and silage maize) under 3 production conditions for the state of North Rhine-Westphalia, Germany. The DAE was evaluated for 5 weather data resolutions (i.e. 1, 10, 25, 50, and 100 km) for 3 response variables including yield, growing season evapotranspiration, and water use efficiency. Five metrics, viz. the spatial bias (Delta), average absolute deviation (AAD), relative AAD, root mean squared error (RMSE), and relative RMSE, were used to evaluate the DAE on both the input weather data and simulated results. For weather data, we found that data aggregation narrowed the spatial variability but widened the., especially across mountainous areas. The DAE on loss of spatial heterogeneity and hotspots was stronger than on the average changes over the region. The DAE increased when coarsening the spatial resolution of the input weather data. The DAE varied considerably across different models, but changed only slightly for different production conditions and crops. We conclude that if spatially detailed information is essential for local management decision, higher resolution is desirable to adequately capture the spatial variability for heterogeneous regions. The required resolution depends on the choice of the model as well as the environmental condition of the study area.
|
|