|
Dumont, B., Leemans, V., Mansouri, M., Bodson, B., Destain, J. - P., & Destain, M. - F. (2014). Parameter identification of the STICS crop model, using an accelerated formal MCMC approach. Env. Model. Softw., 52, 121–135.
Abstract: This study presents a Bayesian approach for the parameters’ identification of the STICS crop model based on the recently developed Differential Evolution Adaptive Metropolis (DREAM) algorithm. The posterior distributions of nine specific crop parameters of the STICS model were sampled with the aim to improve the growth simulations of a winter wheat (Triticum aestivum L) culture. The results obtained with the DREAM algorithm were initially compared to those obtained with a Nelder-Mead Simplex algorithm embedded within the OptimiSTICS package. Then, three types of likelihood functions implemented within the DREAM algorithm were compared, namely the standard least square, the weighted least square, and a transformed likelihood function that makes explicit use of the coefficient of variation (CV). The results showed that the proposed CV likelihood function allowed taking into account both noise on measurements and heteroscedasticity which are regularly encountered in crop modelling. (C) 2013 Elsevier Ltd. All rights reserved.
|
|
|
Dumont, B., Vancutsem, F., Seutin, B., Bodson, B., Destain, J. - P., & Destain, M. - F. (2012). Simulation de la croissance du blé à l’aide de modèles écophysiologiques: Synthèse bibliographique des méthodes, potentialités et limitations. Biotechnologie, Agronomie, Société et Environnement, 163, 376–386.
Abstract: Crop models describe the growth and development of a crop interacting with its surrounding agro-environmental conditions (soil, climate and the close conditions of the plant). However, the implementation of such models remains difficult because of the high number of explanatory variables and parameters. It often happens that important discrepancies appear between measured and simulated values. This article aims to highlight the different sources of uncertainty related to the use of crop models, as well as the actual methods that allow a compensation for or, at least, a consideration of these sources of error during analysis of the model results. This article presents a literature review, which firstly synthesises the general mathematical structure of crop models. The main criteria for evaluating crop models are then described. Finally, several methods used for improving models are given. Parameter estimation methods, including frequentist and Bayesian approaches, are presented and data assimilation methods are reviewed.
|
|
|
Liu, X., Lehtonen, H., Purola, T., Pavlova, Y., Rötter, R., & Palosuo, T. (2016). Dynamic economic modelling of crop rotations with farm management practices under future pest pressure. Agricultural Systems, 144, 65–76.
Abstract: Agricultural practice is facing multiple challenges under volatile commodity markets, inevitable climate change, mounting pest pressure and various other environment-related constraints. The objective of this research is to present a dynamic optimization model of crop rotations and farm management and show its suitability for economic analysis over a 30 year time period. In this model, we include management practices such as fertilization, fungicide treatment and liming, and apply it in a region in Southwestern Finland. Results show that (i) growing pest pressure favours the cultivation of wheat-oats and wheat-oilseeds combinations, while (ii) market prices largely determine the crops in the rotation plan and the specific management practices adopted. The flexibility of our model can also be utilized in evaluating the value of other management options such as new cultivars under different projections of future climate and market conditions.
|
|
|
Mandryk, M., Reidsma, P., Kanellopoulos, A., Groot, J. C. J., & van Ittersum, M. K. (2014). The role of farmers’ objectives in current farm practices and adaptation preferences: a case study in Flevoland, the Netherlands. Reg Environ Change, 14(4), 1463–1478.
Abstract: The diversity in farmers’ objectives and responses to external drivers is usually not considered in integrated assessment studies that investigate impacts and adaptation to climate and socio-economic change. Here, we present an approach to assess how farmers’ stated objectives relate to their currently implemented practices and to preferred adaptation options, and we discuss what this implies for assessments of future changes. We based our approach on a combination of multi-criteria decision-making methods. We consistently assessed the importance of farmers’ objectives and adaptation preferences from what farmers say (based on interviews), from what farmers actually do (by analysing current farm performance) and from what farmers want (through a selected alternative farm plan). Our study was performed for six arable farms in Flevoland, a province in the Netherlands. Based on interviews with farmers, we reduced the long list of possible objectives to the most important ones. The objectives we assessed included maximization of economic result and soil organic matter, and minimization of gross margin variance, working hours and nitrogen balance. In our sample, farmers’ stated preferences in objectives were often not fully reflected in realized farming practices. Adaptation preferences of farmers largely resembled their current performance, but generally involved a trend towards stated preferences. Our results suggest that in Flevoland, although farmers do have more objectives, in practical decision-making they focus on economic result maximization, while for strategic decision-making they account for objectives influencing long-term performance and indicators associated with sustainability, in this case soil organic matter.
|
|
|
Mitter, H., Heumesser, C., & Schmid, E. (2015). Spatial modeling of robust crop production portfolios to assess agricultural vulnerability and adaptation to climate change. Land Use Policy, 46, 75–90.
Abstract: Agricultural vulnerability to climate change is likely to vary considerably between agro-environmental regions. Exemplified on Austrian cropland, we aim at (i) quantifying climate change impacts on agricultural vulnerability which is approximated by the indicators crop yields and gross margins, (ii) developing robust crop production portfolios for adaptation, and (iii) analyzing the effect of agricultural policies and risk aversion on the choice of crop production portfolios. We have employed a spatially explicit, integrated framework to assess agricultural vulnerability and adaptation. It combines a statistical climate change model for Austria and the period 2010-2040, a crop rotation model, the bio-physical process model EPIC (Environmental Policy Integrated Climate), and a portfolio optimization model. We find that under climate change, crop production portfolios include higher shares of intensive crop management practices, increasing average crop yields by 2-15% and expected gross margins by 3-18%, respectively. The results depend on the choice of adaptation measures and on the level of risk aversion and vary by region. In the semi-arid eastern parts of Austria, average dry matter crop yields are lower but gross margins are higher than in western Austria due to bio-physical and agronomic heterogeneities. An abolishment of decoupled farm payments and a threefold increase in agri-environmental premiums would reduce nitrogen inputs by 23-33%, but also crop yields and gross margins by 18-37%, on average. From a policy perspective, a twofold increase in agri-environmental premiums could effectively reduce the trade-offs between crop production and environmental impacts. (C) 2015 Elsevier Ltd. All rights reserved.
|
|