|
García-López, J., Lorite, I. J., García-Ruiz, R., & Domínguez, J. (2014). Evaluation of three simulation approaches for assessing yield of rainfed sunflower in a Mediterranean environment for climate change impact modelling. Clim. Change, 124(1-2), 147–162.
Abstract: The determination of the impact of climate change on crop yield at a regional scale requires the development of new modelling methodologies able to generate accurate yield estimates with reduced available data. In this study, different simulation approaches for assessing yield have been evaluated. In addition to two well-known models (AquaCrop and Stewart function), a methodological proposal considering a simplified approach using an empirical model (SOM) has been included in the analysis. This empirical model was calibrated using rainfed sunflower experimental field data from three sites located in Andalusia, southern Spain, and validated using two additional locations, providing very satisfactory results compared with the other models with higher data requirements. Thus, only requiring weather data (accumulated rainfall from the beginning of the season fixed on September 1st, and maximum temperature during flowering) the approach accurately described the temporal and spatial yield variability observed (RMSE = 391 kg ha(-1)). The satisfactory results for assessing yield of sunflower under semi-arid conditions obtained in this study demonstrate the utility of empirical approaches with few data requirements, providing an excellent decision tool for climate change impact analyses at a regional scale, where available data is very limited.
|
|
|
Mueller, L., Schindler, U., Shepherd, T. G., Ball, B. C., Smolentseva, E., Hu, C., et al. (2012). A framework for assessing agricultural soil quality on a global scale. Archives of Agronomy and Soil Science, 58(sup1), S76–S82.
Abstract: This paper provides information about a novel approach of rating agricultural soil quality (SQ) and crop yield potentials consistently over a range of spatial scales. The Muencheberg Soil Quality Rating is an indicator-based straightforward overall assessment method of agricultural SQ. It is a framework covering aspects of soil texture, structure, topography and climate which is based on 8 basic indicators and more than 12 hazard indicators. Ratings are performed by visual methods of soil evaluation. A field manual is then used to provide ratings from tables based on indicator thresholds. Finally, overall rating scores are given, ranging from 0 (worst) to 100 (best) to characterise crop yield potentials. The current approach is valid for grassland and cropland. Field tests in several countries confirmed the practicability and reliability of the method. At field scale, soil structure is a crucial, management induced criterion of agricultural SQ. At the global scale, climate controlled hazard indicators of drought risk and soil thermal regime are crucial for SQ and crop yield potentials. Final rating scores are well correlated with crop yields. We conclude that this system could be evolved for ranking and controlling agricultural SQ on a global scale.
|
|