|
Höglind, M., Van Oijen, M., Cameron, D., & Persson, T. (2016). Process-based simulation of growth and overwintering of grassland using the BASGRA model. Ecol. Model., 335, 1–15.
Abstract: Process-based models (PBM) for simulation of weather dependent grass growth can assist farmers and plant breeders in addressing the challenges of climate change by simulating alternative roads of adaptation. They can also provide management decision support under current conditions. A drawback of existing grass models is that they do not take into account the effect of winter stresses, limiting their use for full-year simulations in areas where winter survival is a key factor for yield security. Here, we present a novel full-year PBM for grassland named BASGRA. It was developed by combining the LINGRA grassland model (Van Oijen et al., 2005a) with models for cold hardening and soil physical winter processes. We present the model and show how it was parameterized for timothy (Phleum pratense L.), the most important forage grass in Scandinavia and parts of North America and Asia. Uniquely, BASGRA simulates the processes taking place in the sward during the transition from summer to winter, including growth cessation and gradual cold hardening, and functions for simulating plant injury due to low temperatures, snow and ice affecting regrowth in spring. For the calibration, we used detailed data from five different locations in Norway, covering a wide range of agroclimatic regions, day lengths (latitudes from 59 degrees to 70 degrees N) and soil conditions. The total dataset included 11 variables, notably above-ground dry matter, leaf area index, tiller density, content of C reserves, and frost tolerance. All data were used in the calibration. When BASGRA was run with the maximum a-posteriori (MAP) parameter vector from the single, Bayesian calibration, nearly all measured variables were simulated to an overall normalized root mean squared error (NRMSE) <0.5. For many site x experiment combinations, NRMSE was <0.3. The temporal dynamics were captured well for most variables, as evaluated by comparing simulated time courses versus data for the individual sites. The results may suggest that BASGRA is a reasonably robust model, allowing for simulation of growth and several important underlying processes with acceptable accuracy for a range of agroclimatic conditions. However, the robustness of the model needs to be tested further using independent data from a wide range of growing conditions. Finally we show an example of application of the model, comparing overwintering risks in two climatically different sites, and discuss future model applications. Further development work should include improved simulation of the dynamics of C reserves, and validation of winter tiller dynamics against independent data. (C) 2016 Elsevier B.V. All rights reserved.
|
|
|
Jing, Q., Bélanger, G., Baron, V., Bonesmo, H., Virkajärvi, P., & Young, D. (2012). Regrowth simulation of the perennial grass timothy. Ecol. Model., 232, 64–77.
Abstract: Several process-based models for simulating the growth of perennial grasses have been developed but few include the simulation of regrowth. The model CATIMO simulates the primary growth of timothy (Phleum pratense L), an important perennial forage grass species in northern regions of Europe and North America. Our objective was to further develop the model CATIMO to simulate timothy regrowth using the concept of reserve-dependent growth. The performance of this modified CATIMO model in simulating leaf area index (LAI), biomass dry matter (DM) yield, and N uptake of regrowth was assessed with data from four independent field experiments in Norway, Finland, and western and eastern Canada using an approach that combines graphical comparison and statistical analysis. Biomass DM yield and N uptake of regrowth were predicted at the same accuracy as primary growth with linear regression coefficients of determination between measured and simulated values greater than 0.79, model simulation efficiencies greater than 0.78, and normalized root mean square errors (14-30% for biomass and 24-34% for N uptake) comparable with the coefficients of variation of measured data (1-21% for biomass and 1-25% for N uptake). The model satisfactorily simulated the regrowth LAI but only up to a value of about 4.0. The modified CATIMO model with its capacity to simulate regrowth provides a framework to simulate perennial grasses with multiple harvests, and to explore management options for sustainable grass production under different environmental conditions. Crown Copyright (C) 2012 Published by Elsevier B.V. All rights reserved.
|
|
|
Korhonen, P., Palosuo, T., Persson, T., Höglind, M., Jego, G., Van Oijen, M., et al. (2018). Modelling grass yields in northern climates – a comparison of three growth models for timothy. Field Crops Research, 224, 37–47.
Abstract: During the past few years, several studies have compared the performance of crop simulation models to assess the uncertainties in model-based climate change impact assessments and other modelling studies. Many of these studies have concentrated on cereal crops, while fewer model comparisons have been conducted for grasses. We compared the predictions for timothy grass (Phleum pratertse L.) yields for first and second cuts along with the dynamics of above-ground biomass for the grass simulation models BASGRA and CATIMO, and the soil -crop model STICS. The models were calibrated and evaluated using field data from seven sites across Northern Europe and Canada with different climates, soil conditions and management practices. Altogether the models were compared using data on timothy grass from 33 combinations of sites, cultivars and management regimes. Model performances with two calibration approaches, cultivar-specific and generic calibrations, were compared. All the models studied estimated the dynamics of above-ground biomass and the leaf area index satisfactorily, but tended to underestimate the first cut yield. Cultivar-specific calibration resulted in more accurate first cut yield predictions than the generic calibration achieving root mean square errors approximately one third lower for the cultivar-specific calibration. For the second cut, the difference between the calibration methods was small. The results indicate that detailed soil process descriptions improved the overall model performance and the model responses to management, such as nitrogen applications. The results also suggest that taking the genetic variability into account between cultivars of timothy grass also improves the yield estimates. Calibrations using both spring and summer growth data simultaneously revealed that processes determining the growth in these two periods require further attention in model development.
|
|
|
Persson, T., Höglind, M., Gustavsson, A. - M., Halling, M., Jauhiainen, L., Niemeläinen, O., et al. (2014). Evaluation of the LINGRA timothy model under Nordic conditions. Field Crops Research, 161, 87–97.
Abstract: Simulation models are frequently applied to determine the production potential of forage grasses under various scenarios, including climate change. Thorough calibrations and evaluations of forage grass models can help improve their applicability. This study evaluated the ability of the Light Interception and Utilization Simulator-GRAss (LINGRA) model to predict biomass yield of timothy (Phleum pratense L. cv. Grindstad) in the Nordic countries. Variety trial data for the first and second year after establishment were obtained for seven locations: Jokioinen, Finland (60 degrees 48 ‘ N; 23 degrees 29 ‘ E), Maaninka, Finland (63 degrees 09 ‘ N; 27 degrees 18 ‘ E), Korpa, Iceland (64 degrees 09 ‘ N; 21 degrees 45 ‘ W), Srheim, Norway (58 degrees 41 ‘ N; 5 degrees 39 ‘ E), Lillerud, Sweden (59 degrees 24’ N; 13 degrees 16 ‘ E), Ostersund, Sweden (63 degrees 15 ‘ N; 14 degrees 34 ‘ E) and Ulna Sweden (63 degrees 49 ‘ N; 20 degrees 13 ‘ E) from 1992 to 2012. Two calibrations of the LINGRA model were carried out using Bayesian techniques. In the first of these (SRrheim calibration), data on biomass yield and underlying variables obtained from independent field trials at Srheim were used. In the second (Nordic calibration), biomass data from the other locations were used as well. The model was validated against the remaining set of biomass yields from all locations not included in the Nordic calibration. The observed total seasonal yield the first and second year after establishment was 913 and 991 g DM m(-2) respectively on average across the locations. The corresponding average simulated yield after the Srheim calibration was 1044 (root mean square error (RMSE) 258) and 1112 g DM m(-2) (RMSE 312), respectively. After the Nordic calibration, the simulated average total seasonal yield was 863 (RMSE 242) the first year and 927 g DM m(-2) (RMSE 271) the second year after establishment. The differences between the observed and simulated first cut yield followed the same patterns, whereas the prediction accuracy for second cut yield did not differ substantially between the calibration approaches.Using the parameter set from the Nordic region decreased the model predictability at Srheim compared with only using model parameters derived from this location. These results show that using biomass data from several locations, instead of only one specific location, in the calibration of the LINGRA model improved the overall prediction accuracy of first cut dry matter yield and total seasonal dry matter yield across an environmentally heterogeneous region. To further analyse the usefulness of including multi-site data in forage grass model calibrations, other forage grass models could be evaluated against the same dataset.
|
|
|
Persson, T., Kværnø, S., & Höglind, M. (2015). Impact of soil type extrapolation on timothy grass yield under baseline and future climate conditions in southeastern Norway. Clim. Res., 65, 71–86.
Abstract: Interactions between soil properties and climate affect forage grass productivity. Dynamic models, simulating crop performance as a function of environmental conditions, are valid for a specific location with given soil and weather conditions. Extrapolations of local soil properties to larger regions can help assess the requirement for soil input in regional yield estimations. Using the LINGRA model, we simulated the regional yield level and variability of timothy, a forage grass, in Akershus and Ostfold counties, Norway. Soils were grouped according to physical similarities according to 4 sets of criteria. This resulted in 66, 15, 5 and 1 groups of soils. The properties of the soil with the largest area was extrapolated to the other soils within each group and input to the simulations. All analyses were conducted for 100 yr of generated weather representing the period 1961-1990, and climate projections for the period 2046-2065, the Intergovernmental Panel on Climate Change greenhouse gas emission scenario A1B, and 4 global climate models. The simulated regional seasonal timothy yields were 5-13% lower on average and had higher inter-annual variability for the least detailed soil extrapolation than for the other soil extrapolations, across climates. There were up to 20% spatial intra-regional differences in simulated yield between soil extrapolations. The results indicate that, for conditions similar to these studied here, a few representative profiles are sufficient for simulations of average regional seasonal timothy yield. More spatially detailed yield analyses would benefit from more detailed soil input.
|
|