|
Höglind, M., Thorsen, S. M., & Semenov, M. A. (2013). Assessing uncertainties in impact of climate change on grass production in Northern Europe using ensembles of global climate models. Agricultural and Forest Meteorology, 170, 103–113.
Abstract: Forage-based dairy and livestock production is the backbone of agriculture in Northern Europe in economic terms. Changes in growing conditions that affect forage grass yield may have great economic consequences. This study assessed the impact of climate change on two grass species, timothy and ryegrass, at 14 locations in Northern Europe (Iceland, Scandinavia, Baltic countries) in a near-future scenario (2040-2065) compared with the baseline period 1960-1990. Local-scale climate scenarios were based on the CMIP3 multi-model ensembles of 15 global climate models in order to quantify the uncertainty in the impacts relating to highly uncertain projections of future climate. Potential yield of timothy, the most important perennial forage grass in Northern Europe, was simulated under the assumption of optimal overwintering conditions and current CO2 level, in order to obtain an estimate of the effect of changes in summer climate per se. The risk of frost and ice damage during winter was also assessed. The simulation results demonstrated that potential grass yield will increase throughout the study area, mainly as a result of increased growing temperatures. The yield response to climate change was slightly larger in irrigated than non-irrigated conditions (14% and 11%, respectively), due to larger water deficit for the 2050 scenario. However, a geo-climatic gradient was evident, with the largest predicted yield response at western locations. A geo-climatic gradient was also revealed with respect to potential frost damage, which was predicted to increase during winter in some areas east of the Baltic Sea for timothy, and for a larger number of locations both east and west of the Baltic Sea for perennial ryegrass. The risk of frost damage in spring was predicted to increase mainly in western parts of the study area. If frost damage to perennial ryegrass increases during winter, the expected increase in winter temperature due to global warming may not necessarily improve overwintering conditions, so the growing zone may not necessarily expand to the north and east of the study area by 2050. The uncertainty in impacts was frequently, but not consistently, greater in western than eastern locations. (C) 2012 Elsevier B.V. All rights reserved.
|
|
|
Jing, Q., Bélanger, G., Baron, V., Bonesmo, H., Virkajärvi, P., & Young, D. (2012). Regrowth simulation of the perennial grass timothy. Ecol. Model., 232, 64–77.
Abstract: Several process-based models for simulating the growth of perennial grasses have been developed but few include the simulation of regrowth. The model CATIMO simulates the primary growth of timothy (Phleum pratense L), an important perennial forage grass species in northern regions of Europe and North America. Our objective was to further develop the model CATIMO to simulate timothy regrowth using the concept of reserve-dependent growth. The performance of this modified CATIMO model in simulating leaf area index (LAI), biomass dry matter (DM) yield, and N uptake of regrowth was assessed with data from four independent field experiments in Norway, Finland, and western and eastern Canada using an approach that combines graphical comparison and statistical analysis. Biomass DM yield and N uptake of regrowth were predicted at the same accuracy as primary growth with linear regression coefficients of determination between measured and simulated values greater than 0.79, model simulation efficiencies greater than 0.78, and normalized root mean square errors (14-30% for biomass and 24-34% for N uptake) comparable with the coefficients of variation of measured data (1-21% for biomass and 1-25% for N uptake). The model satisfactorily simulated the regrowth LAI but only up to a value of about 4.0. The modified CATIMO model with its capacity to simulate regrowth provides a framework to simulate perennial grasses with multiple harvests, and to explore management options for sustainable grass production under different environmental conditions. Crown Copyright (C) 2012 Published by Elsevier B.V. All rights reserved.
|
|