|
Kollas, C., Kersebaum, K. C., Nendel, C., Manevski, K., Müller, C., Palosuo, T., et al. (2015). Crop rotation modelling—A European model intercomparison. European Journal of Agronomy, 70, 98–111.
Abstract: • First model inter-comparison on crop rotations. • Continuous simulation of multi-year crop rotations yields outperformed single-year simulation. • Low accuracy of yield predictions in less commonly modelled crops such as potato, radish, grass vegetation. • Multi-model mean prediction was found to minimise the likely error arising from single-model predictions. • The representation of intermediate crops and carry-over effects in the models require further research efforts.
Diversification of crop rotations is considered an option to increase the resilience of European crop production under climate change. So far, however, many crop simulation studies have focused on predicting single crops in separate one-year simulations. Here, we compared the capability of fifteen crop growth simulation models to predict yields in crop rotations at five sites across Europe under minimal calibration. Crop rotations encompassed 301 seasons of ten crop types common to European agriculture and a diverse set of treatments (irrigation, fertilisation, CO2 concentration, soil types, tillage, residues, intermediate or catch crops). We found that the continuous simulation of multi-year crop rotations yielded results of slightly higher quality compared to the simulation of single years and single crops. Intermediate crops (oilseed radish and grass vegetation) were simulated less accurately than main crops (cereals). The majority of models performed better for the treatments of increased CO2 and nitrogen fertilisation than for irrigation and soil-related treatments. The yield simulation of the multi-model ensemble reduced the error compared to single-model simulations. The low degree of superiority of continuous simulations over single year simulation was caused by (a) insufficiently parameterised crops, which affect the performance of the following crop, and (b) the lack of growth-limiting water and/or nitrogen in the crop rotations under investigation. In order to achieve a sound representation of crop rotations, further research is required to synthesise existing knowledge of the physiology of intermediate crops and of carry-over effects from the preceding to the following crop, and to implement/improve the modelling of processes that condition these effects.
|
|
|
Roggero, P. P. (2016). IC-FAR – Linking long term observatories with crop system modelling for a better understanding of climate change impact and adaptation strategies for Italian cropping systems. European Journal of Agronomy, 77, 136–137.
Abstract: This special issue includes a sub-set of papers developed in the context of the three-years (2013-16) research project “IC-FAR – Linking long term observatories with crop system modelling for a better understanding of climate change impact and adaptation strategies for Italian cropping systems” (www.icfar.it), funded by the Italian Ministry of Education, University and Research. IC-FAR collects the legacy of some three-four generations of researchers, members of the Italian Society of Agronomy, that from the 1960ies onward established long term agro-ecosystem experiments (LTAE) in various Italian locations, to address a wide range of agronomy research questions. A lot of the results from these LTAE were not yet published or were published as grey literature or in Italian and almost always as a single-site, single-experiment outcome.
|
|