|
Allan, C., Nguyen, T. P. L., Seddaiu, G., Wilson, B., & Roggero, P. P. (2013). Integrating local knowledge with experimental research: case studies on managing cropping systems in Italy and Australia. Ital. J. Agron., 8(2), 15.
Abstract: The sustainable development of agricultural systems is currently challenged by many complex agro-environmental issues. These are characterized by an incomplete understanding of the situation and the problems that arise, and the conflicting opinions that result, issues over boundaries that are often difficult to define, and controversy over the multiple goals and uncertain outcomes. Added to these characteristics, we also have the slow and often inadequate uptake and implementation of research outcomes in this complex, real world. In order to improve sustainability of agro-ecosystems, agronomic research must move away from the linear research approaches and extension practices adopted so far that have focused purely on biophysical agro-ecosystems. The theoretical operational space of agronomic research must be transformed by considering agronomic issues as part of a broader social-agro-ecosystem. One aspect of this transformation is the inclusion of knowledge collected on a local level with the participation of farmers on the ground. The integration of local experiential knowledge with traditional agronomic research is by necessity based on the participation of many different stakeholders and there can be no single blueprint for how best to develop and use the input received. However, agronomists and policy advisors require general guidelines drawn up from actual experience in order to accelerate positive agronomic change. We address this need through a comparative analysis of two case studies; one involves multi-stakeholder research in a cropping system in the dairy district of Arborea, Sardinia, Italy. The central question was: How can high crop production be maintained while also achieving the EU target water quality and minimizing the production costs? The second case is a multi-stakeholder soil health project from south-eastern Australia. Here the central question was: How can soil decline be prevented and reversed in this district, and soils made more resilient to future challenges? The Social Learning for the Integrated Management and sustainable use of water (SLIM) framework, a useful heuristic tool for exploring the dynamics of transformational change, guided the analysis of the case studies. Within this framework, a key indicator of success is the emergence of new knowledge from the creation of new spaces for learning between researchers and local stakeholders. The Italian case study appears to have been the most successful in this sense, as opportunities for joint exploration of research data allowed new potential farming responses to the central question to emerge. The multi-stakeholder processes in the Australian case focused more on providing public openings for individual learning, and missed the opportunity for new knowledge to emerge through joint exploration. We conclude that participatory approaches may enable transformative practice through knowledge integration, but that this process is not an automatic outcome of increased community participation.
|
|
|
Bellocchi, G., Rivington, M., Matthews, K., & Acutis, M. (2015). Deliberative processes for comprehensive evaluation of agroecological models. A review. Agron. Sust. Developm., 35(2), 589–605.
Abstract: The use of biophysical models in agroecology has increased in the last few decades for two main reasons: the need to formalize empirical knowledge and the need to disseminate model-based decision support for decision makers (such as farmers, advisors, and policy makers). The first has encouraged the development and use of mathematical models to enhance the efficiency of field research through extrapolation beyond the limits of site, season, and management. The second reflects the increasing need (by scientists, managers, and the public) for simulation experimentation to explore options and consequences, for example, future resource use efficiency (i.e., management in sustainable intensification), impacts of and adaptation to climate change, understanding market and policy responses to shocks initiated at a biophysical level under increasing demand, and limited supply capacity. Production concerns thus dominate most model applications, but there is a notable growing emphasis on environmental, economic, and policy dimensions. Identifying effective methods of assessing model quality and performance has become a challenging but vital imperative, considering the variety of factors influencing model outputs. Understanding the requirements of stakeholders, in respect of model use, logically implies the need for their inclusion in model evaluation methods. We reviewed the use of metrics of model evaluation, with a particular emphasis on the involvement of stakeholders to expand horizons beyond conventional structured, numeric analyses. Two major topics are discussed: (1) the importance of deliberative processes for model evaluation, and (2) the role computer-aided techniques may play to integrate deliberative processes into the evaluation of agroecological models. We point out that (i) the evaluation of agroecological models can be improved through stakeholder follow-up, which is a key for the acceptability of model realizations in practice, (ii) model credibility depends not only on the outcomes of well-structured, numerically based evaluation, but also on less tangible factors that may need to be addressed using complementary deliberative processes, (iii) comprehensive evaluation of simulation models can be achieved by integrating the expectations of stakeholders via a weighting system of preferences and perception, (iv) questionnaire-based surveys can help understand the challenges posed by the deliberative process, and (v) a benefit can be obtained if model evaluation is conceived in a decisional perspective and evaluation techniques are developed at the same pace with which the models themselves are created and improved. Scientific knowledge hubs are also recognized as critical pillars to advance good modeling practice in relation to model evaluation (including access to dedicated software tools), an activity which is frequently neglected in the context of time-limited framework programs.
|
|
|
Gutierrez, L., Piras, F., & Roggero, P. P. (2015). A global vector autoregression model for the analysis of wheat export prices. American Journal of Agricultural Economics, 97(5), 1494–1511.
Abstract: Food commodity price fluctuations have an important impact on poverty and food insecurity across the world. Conventional models have not provided a complete picture of recent price spikes in agricultural commodity markets, and there is an urgent need for appropriate policy responses. Perhaps new approaches are needed to better understand international spill-overs, the feedback between the real and the financial sectors, as well as the link between food and energy prices. In this article, we present the results from a new worldwide dynamic model that provides the short and long-run impulse responses of the international wheat price to various real and financial shocks.
|
|
|
Scholten, M. C. T. (2015). Research and innovation for a competitive and sustainable animal production sector in a climate changing Europe: linking up MACSUR with Animal Task Force. Advances in Animal Biosciences, 6(01), 1–2.
|
|