|
Graß, R., Thies, B., Kersebaum, K. - C., & Wachendorf, M. (2015). Simulating dry matter yield of two cropping systems with the simulation model HERMES to evaluate impact of future climate change. European Journal of Agronomy, 70, 1–10.
Abstract: Regionalized model calculations showed increased rainfall and temperatures in winter and less precipitation and higher temperatures in summer due to climate change effects in the future for numerous countries in the northern hemisphere. Furthermore, model simulations predicted enhanced weather variability with an increased risk of yield losses and reduced yield stability. Recently, double cropping systems (DCS) were suggested as an environmental friendly and productive adaptation strategy with increased yield stability. This paper reviews the potential benefit of four DCS (rye (Secale cereale L.) as first crop and maize (Zea mays L.), sunflower (Helianthus annuus L.), sorghum (Sorghum sudanense L. x Sorghum bicolor L.) and sudan grass (S. sudanense L.) as second crops) in comparison with four conventional sole cropping systems (SCS) (maize, sunflower, sorghum and sudan grass) with regard to dry matter (DM) yield and soil water under conditions of climate change. We used the agro-ecosystem model HERMES for simulating these variables until the year 2100. The investigated crops sunflower, sorghum and sudan grass were parameterised first for HERMES achieving a satisfying performance. Results showed always higher DM yields per year of DCS compared with SCS. This was mainly caused by yield increases of the first crop winter rye harvested at the stage of milk ripeness. As a winter hardy crop, rye will benefit from increased precipitation and higher temperatures during winter months as well as from extended growth periods with an earlier onset in spring and an increase of growing days. Furthermore, rye is able to use the increased winter humidity for its spring growth in an efficient way. By contrast, model simulations showed that summer crops will be affected by reduced precipitation and higher temperatures during summer month for periods from 2050 onwards with the consequence of reduced yields. This yield reduction was found for all summer crops both in conventional sole crop and in DCS. Preponed harvesting of first crop winter rye as a consequence of earlier onset of growth period in spring under prospective climatic conditions lead to yield decrease, which could not be equalised by preponed sowing of second crops and extension of their growth period. Hence, total annual yield of both crops together decreased. The modification of sowing and harvesting dates as an adaptation strategy requires further research with the use of more holistic simulation models. To summarize, DCS may provide a promising adaptation strategy to effects of climate change with a substantial stabilisation of crop yields.
|
|
|
Jägermeyr, J., Gerten, D., Schaphoff, S., Heinke, J., Lucht, W., & Rockström, J. (2016). Integrated crop water management might sustainably halve the global food gap. Environ. Res. Lett., 11(2), 025002.
Abstract: As planetary boundaries are rapidly being approached, humanity has little room for additional expansion and conventional intensification of agriculture, while a growing world population further spreads the food gap. Ample evidence exists that improved on-farm water management can close water-related yield gaps to a considerable degree, but its global significance remains unclear. In this modeling study we investigate systematically to what extent integrated crop water management might contribute to closing the global food gap, constrained by the assumption that pressure on water resources and land does not increase. Using a process-based bio-/agrosphere model, we simulate the yield-increasing potential of elevated irrigation water productivity (including irrigation expansion with thus saved water) and optimized use of in situ precipitation water (alleviated soil evaporation, enhanced infiltration, water harvesting for supplemental irrigation) under current and projected future climate (from 20 climate models, with and without beneficial CO2 effects). Results show that irrigation efficiency improvements can save substantial amounts of water in many river basins (globally 48% of non-productive water consumption in an ‘ambitious’ scenario), and if rerouted to irrigate neighboring rainfed systems, can boost kcal production significantly (26% global increase). Low-tech solutions for small-scale farmers on water-limited croplands show the potential to increase rainfed yields to a similar extent. In combination, the ambitious yet achievable integrated water management strategies explored in this study could increase global production by 41% and close the water-related yield gap by 62%. Unabated climate change will have adverse effects on crop yields in many regions, but improvements in water management as analyzed here can buffer such effects to a significant degree.
|
|
|
Jing, Q., Bélanger, G., Baron, V., Bonesmo, H., Virkajärvi, P., & Young, D. (2012). Regrowth simulation of the perennial grass timothy. Ecol. Model., 232, 64–77.
Abstract: Several process-based models for simulating the growth of perennial grasses have been developed but few include the simulation of regrowth. The model CATIMO simulates the primary growth of timothy (Phleum pratense L), an important perennial forage grass species in northern regions of Europe and North America. Our objective was to further develop the model CATIMO to simulate timothy regrowth using the concept of reserve-dependent growth. The performance of this modified CATIMO model in simulating leaf area index (LAI), biomass dry matter (DM) yield, and N uptake of regrowth was assessed with data from four independent field experiments in Norway, Finland, and western and eastern Canada using an approach that combines graphical comparison and statistical analysis. Biomass DM yield and N uptake of regrowth were predicted at the same accuracy as primary growth with linear regression coefficients of determination between measured and simulated values greater than 0.79, model simulation efficiencies greater than 0.78, and normalized root mean square errors (14-30% for biomass and 24-34% for N uptake) comparable with the coefficients of variation of measured data (1-21% for biomass and 1-25% for N uptake). The model satisfactorily simulated the regrowth LAI but only up to a value of about 4.0. The modified CATIMO model with its capacity to simulate regrowth provides a framework to simulate perennial grasses with multiple harvests, and to explore management options for sustainable grass production under different environmental conditions. Crown Copyright (C) 2012 Published by Elsevier B.V. All rights reserved.
|
|
|
Kässi, P., Känkänen, H., Niskanen, O., Lehtonen, H., & Höglind, M. (2015). Farm level approach to manage grass yield variation under climate change in Finland and north-western Russia. Biosystems Engineering, 140, 11–22.
Abstract: Cattle feeding in Northern Europe is based on grass silage, but grass growth is highly dependent on weather conditions. If ensuring sufficient silage availability in every situation is prioritised, the lowest expected yield level determines the cultivated area in farmers’ decision-making. One way to manage the variation in grass yield is to increase grass production and silage storage capacity so that they exceed the annual consumption at the farm. The cost of risk management in the current and the projected future climate was calculated taking into account grassland yield and yield variability for three study areas under current and mid-21st century climate conditions. The dataset on simulated future grass yields used as input for the risk management calculations were taken from a previously published simulation study. Strategies investigated included using up to 60% more silage grass area than needed in a year with average grass yields, and storing silage for up to 6 months more than consumed in a year (buffer storage). According to the results, utilising an excess silage grass area of 20% and a silage buffer storage capacity of 6 months were the most economic ways of managing drought risk in both the baseline climate and the projected climate of 2046-2065. It was found that the silage yield risk due to drought is likely to decrease in all studied locations, but the drought risk and costs implied still remain significant. (C) 2015 IAgrE. Published by Elsevier Ltd. All rights reserved.
|
|
|
Korhonen, P., Palosuo, T., Persson, T., Höglind, M., Jego, G., Van Oijen, M., et al. (2018). Modelling grass yields in northern climates – a comparison of three growth models for timothy. Field Crops Research, 224, 37–47.
Abstract: During the past few years, several studies have compared the performance of crop simulation models to assess the uncertainties in model-based climate change impact assessments and other modelling studies. Many of these studies have concentrated on cereal crops, while fewer model comparisons have been conducted for grasses. We compared the predictions for timothy grass (Phleum pratertse L.) yields for first and second cuts along with the dynamics of above-ground biomass for the grass simulation models BASGRA and CATIMO, and the soil -crop model STICS. The models were calibrated and evaluated using field data from seven sites across Northern Europe and Canada with different climates, soil conditions and management practices. Altogether the models were compared using data on timothy grass from 33 combinations of sites, cultivars and management regimes. Model performances with two calibration approaches, cultivar-specific and generic calibrations, were compared. All the models studied estimated the dynamics of above-ground biomass and the leaf area index satisfactorily, but tended to underestimate the first cut yield. Cultivar-specific calibration resulted in more accurate first cut yield predictions than the generic calibration achieving root mean square errors approximately one third lower for the cultivar-specific calibration. For the second cut, the difference between the calibration methods was small. The results indicate that detailed soil process descriptions improved the overall model performance and the model responses to management, such as nitrogen applications. The results also suggest that taking the genetic variability into account between cultivars of timothy grass also improves the yield estimates. Calibrations using both spring and summer growth data simultaneously revealed that processes determining the growth in these two periods require further attention in model development.
|
|