|
Holman, I. P., Brown, C., Carter, T. R., Harrison, P. A., & Rounsevell, M. (2019). Improving the representation of adaptation in climate change impact models. Reg. Environ. Change, 19(3), 711–721.
Abstract: Climate change adaptation is a complex human process, framed by uncertainties and constraints, which is difficult to capture in existing assessment models. Attempts to improve model representations are hampered by a shortage of systematic descriptions of adaptation processes and their relevance to models. This paper reviews the scientific literature to investigate conceptualisations and models of climate change adaptation, and the ways in which representation of adaptation in models can be improved. The review shows that real-world adaptive responses can be differentiated along a number of dimensions including intent or purpose, timescale, spatial scale, beneficiaries and providers, type of action, and sector. However, models of climate change consequences for land use and water management currently provide poor coverage of these dimensions, instead modelling adaptation in an artificial and subjective manner. While different modelling approaches do capture distinct aspects of the adaptive process, they have done so in relative isolation, without producing improved unified representations. Furthermore, adaptation is often assumed to be objective, effective and consistent through time, with only a minority of models taking account of the human decisions underpinning the choice of adaptation measures (14%), the triggers that motivate actions (38%) or the time-lags and constraints that may limit their uptake and effectiveness (14%). No models included adaptation to take advantage of beneficial opportunities of climate change. Based on these insights, transferable recommendations are made on directions for future model development that may enhance realism within models, while also advancing our understanding of the processes and effectiveness of adaptation to a changing climate.
|
|
|
Refsgaard, J. C., Arnbjerg-Nielsen, K., Drews, M., Halsnaes, K., Jeppesen, E., Madsen, H., et al. (2013). The role of uncertainty in climate change adaptation strategies – a Danish water management example. Mitig. Adapt. Strateg. Glob. Change, 18(3), 337–359.
Abstract: We propose a generic framework to characterize climate change adaptation uncertainty according to three dimensions: level, source and nature. Our framework is different, and in this respect more comprehensive, than the present UN Intergovernmental Panel on Climate Change (IPCC) approach and could be used to address concerns that the IPCC approach is oversimplified. We have studied the role of uncertainty in climate change adaptation planning using examples from four Danish water related sectors. The dominating sources of uncertainty differ greatly among issues; most uncertainties on impacts are epistemic (reducible) by nature but uncertainties on adaptation measures are complex, with ambiguity often being added to impact uncertainties. Strategies to deal with uncertainty in climate change adaptation should reflect the nature of the uncertainty sources and how they interact with risk level and decision making: (i) epistemic uncertainties can be reduced by gaining more knowledge; (ii) uncertainties related to ambiguity can be reduced by dialogue and knowledge sharing between the different stakeholders; and (iii) aleatory uncertainty is, by its nature, non-reducible. The uncertainty cascade includes many sources and their propagation through technical and socio-economic models may add substantially to prediction uncertainties, but they may also cancel each other. Thus, even large uncertainties may have small consequences for decision making, because multiple sources of information provide sufficient knowledge to justify action in climate change adaptation.
|
|
|
Reidsma, P., Bakker, M. M., Kanellopoulos, A., Alam, S. J., Paas, W., Kros, J., et al. (2015). Sustainable agricultural development in a rural area in the Netherlands? Assessing impacts of climate and socio-economic change at farm and landscape level. Agricultural Systems, 141, 160–173.
Abstract: Changes in climate, technology, policy and prices affect agricultural and rural development. To evaluate whether this development is sustainable, impacts of these multiple drivers need to be assessed for multiple indicators. In a case study area in the Netherlands, a bio-economic farm model, an agent-based land-use change model, and a regional emission model have been used to simulate rural development under two plausible global change scenarios at both farm and landscape level. Results show that in this area, climate change will have mainly negative economic impacts (dairy gross margin, arable gross margin, economic efficiency, milk production) in the warmer and drier W+ scenario, while impacts are slightly positive in the G scenario with moderate climate change. Dairy farmers are worse off than arable farmers in both scenarios. Conversely, when the W+ scenario is embedded in the socio-economic Global Economy (GE) scenario, changes in technology, prices, and policy are projected to have a positive economic impact, more than offsetting the negative climate impacts. Important is, however, that environmental impacts (global warming, terrestrial and aquatic eutrophication) are largely negative and social impacts (farm size, number of farms, nature area, odour) are mixed. In the G scenario combined with the socio-economic Regional Communities (RC) scenario the average dairy gross margin in particular is negatively affected. Social impacts are similarly mixed as in the GE scenario, while environmental impacts are less severe. Our results suggest that integrated assessments at farm and landscape level can be used to guide decision-makers in spatial planning policies and climate change adaptation. As there will always be trade-offs between economic, social, and environmental impacts stakeholders need to interact and decide upon most important directions for policies. This implies a choice between production and income on the one hand and social and environmental services on the other hand
|
|
|
Weindl, I., Lotze-Campen, H., Popp, A., Müller, C., Havlík, P., Herrero, M., et al. (2015). Livestock in a changing climate: production system transitions as an adaptation strategy for agriculture. Environ. Res. Lett., 10(9), 094021.
Abstract: Livestock farming is the world’s largest land use sector and utilizes around 60% of the global biomass harvest. Over the coming decades, climate change will affect the natural resource base of livestock production, especially the productivity of rangeland and feed crops. Based on a comprehensive impact modeling chain, we assess implications of different climate projections for agricultural production costs and land use change and explore the effectiveness of livestock system transitions as an adaptation strategy. Simulated climate impacts on crop yields and rangeland productivity generate adaptation costs amounting to 3% of total agricultural production costs in 2045 (i.e. 145 billion US$). Shifts in livestock production towards mixed crop-livestock systems represent a resource-and cost-efficient adaptation option, reducing agricultural adaptation costs to 0.3% of total production costs and simultaneously abating deforestation by about 76 million ha globally. The relatively positive climate impacts on grass yields compared with crop yields favor grazing systems inter alia in South Asia and North America. Incomplete transitions in production systems already have a strong adaptive and cost reducing effect: a 50% shift to mixed systems lowers agricultural adaptation costs to 0.8%. General responses of production costs to system transitions are robust across different global climate and crop models as well as regarding assumptions on CO2 fertilization, but simulated values show a large variation. In the face of these uncertainties, public policy support for transforming livestock production systems provides an important lever to improve agricultural resource management and lower adaptation costs, possibly even contributing to emission reduction.
|
|