|
Dumont, B., Leemans, V., Ferrandis, S., Bodson, B., Destain, J. - P., & Destain, M. - F. (2014). Assessing the potential of an algorithm based on mean climatic data to predict wheat yield. Precision Agric., 15(3), 255–272.
Abstract: The real-time non-invasive determination of crop biomass and yield prediction is one of the major challenges in agriculture. An interesting approach lies in using process-based crop yield models in combination with real-time monitoring of the input climatic data of these models, but unknown future weather remains the main obstacle to reliable yield prediction. Since accurate weather forecasts can be made only a short time in advance, much information can be derived from analyzing past weather data. This paper presents a methodology that addresses the problem of unknown future weather by using a daily mean climatic database, based exclusively on available past measurements. It involves building climate matrix ensembles, combining different time ranges of projected mean climate data and real measured weather data originating from the historical database or from real-time measurements performed in the field. Used as an input for the STICS crop model, the datasets thus computed were used to perform statistical within-season biomass and yield prediction. This work demonstrated that a reliable predictive delay of 3-4 weeks could be obtained. In combination with a local micrometeorological station that monitors climate data in real-time, the approach also enabled us to (i) predict potential yield at the local level, (ii) detect stress occurrence and (iii) quantify yield loss (or gain) drawing on real monitored climatic conditions of the previous few days.
|
|
|
Ferrise, R., Toscano, P., Pasqui, M., Moriondo, M., Primicerio, J., Semenov, M. A., et al. (2015). Monthly-to-seasonal predictions of durum wheat yield over the Mediterranean Basin. Clim. Res., 65, 7–21.
Abstract: Uncertainty in weather conditions for the forthcoming growing season influences farmers’ decisions, based on their experience of the past climate, regarding the reduction of agricultural risk. Early within-season predictions of grain yield can represent a great opportunity for farmers to improve their management decisions and potentially increase yield and reduce potential risk. This study assessed 3 methods of within-season predictions of durum wheat yield at 10 sites across the Mediterranean Basin. To assess the value of within-season predictions, the model SiriusQuality2 was used to calculate wheat yields over a 9 yr period. Initially, the model was run with observed daily weather to obtain the reference yields. Then, yield predictions were calculated at a monthly time step, starting from 6 mo before harvest, by feeding the model with observed weather from the beginning of the growing season until a specific date and then with synthetic weather constructed using the 3 methods, historical, analogue or empirical, until the end of the growing season. The results showed that it is possible to predict durum wheat yield over the Mediterranean Basin with an accuracy of normalized root means squared error of <20%, from 5 to 6 mo earlier for the historical and empirical methods and 3 mo earlier for the analogue method. Overall, the historical method performed better than the others. Nonetheless, the analogue and empirical methods provided better estimations for low-yielding and high-yielding years, thus indicating great potential to provide more accurate predictions for years that deviate from average conditions.
|
|
|
Gomara, I., Bellocchi, G., Martin, R., Rodriguez-Fonseca, B., & Ruiz-Ramos, M. (2020). Influence of climate variability on the potential forage production of a mown permanent grassland in the French Massif Central. Agricultural and Forest Meteorology, 280, 107768.
Abstract: Climate Services (CS) provide support to decision makers across socio-economic sectors. In the agricultural sector, one of the most important CS applications is to provide timely and accurate yield forecasts based on climate prediction. In this study, the Pasture Simulation model (PaSim) was used to simulate, for the period 1959–2015, the forage production of a mown grassland system (Laqueuille, Massif Central of France) under different management conditions, with meteorological inputs extracted from the SAFRAN atmospheric database. The aim was to generate purely climate-dependent timeseries of optimal forage production, a variable that was maximized by brighter and warmer weather conditions at the grassland. A long-term increase was observed in simulated forage yield, with the 1995–2015 average being 29% higher than the 1959–1979 average. Such increase seems consistent with observed rising trends in temperature and CO2, and multi-decadal changes in incident solar radiation. At interannual timescales, sea surface temperature anomalies of the Mediterranean (MED), Tropical North Atlantic (TNA), equatorial Pacific (El Niño Southern Oscillation) and the North Atlantic Oscillation (NAO) index were found robustly correlated with annual forage yield values. Relying only on climatic predictors, we developed a stepwise statistical multi-regression model with leave-one-out cross-validation. Under specific management conditions (e.g., three annual cuts) and from one to five months in advance, the generated model successfully provided a p-value<0.01 in correlation (t-test), a root mean square error percentage (%RMSE) of 14.6% and a 71.43% hit rate predicting above/below average years in terms of forage yield collection. This is the first modeling study on the possible role of large-scale oceanic–atmospheric teleconnections in driving forage production in Europe. As such, it provides a useful springboard to implement a grassland seasonal forecasting system in this continent.
|
|
|
Helming, K., Diehl, K., Geneletti, D., & Wiggering, H. (2013). Mainstreaming ecosystem services in European policy impact assessment. Environmental Impact Assessment Review, 40, 82–87.
Abstract: The concept of ecosystem services as developed for the Millennium Ecosystem Assessment (MA) is currently the most extensive, international, scientific concept dealing with the interaction between the world’s ecosystems and human well-being. The fundamental asset is seen in the relevancy of the concept at the science–policy interface. Albeit, the mainstreaming of ecosystem services into policy making requires a framework that allows the transition of the scientific concept into the rationale of policy making. We hypothesize that the procedure of policy impact assessment is a suitable venue for this transition. This brings up two questions: 1) where in the process of policy impact assessment can ecosystem services be mainstreamed? 2) How can the impact on ecosystem services properly be accounted for? In this paper we distinguish two groups of policy cases: explicit cases directly addressing ecosystem services, and implicit cases of policies that follow other purposes but may have unintended impacts on ecosystem services as a side effect. The second group covers a wide range of policies for which we set out a framework for mainstreaming of ecosystem services. The framework is exemplary designed for the instrument of ex-ante impact assessment at European policy making level. We reveal that the two concepts of the MA and of the European policy impact assessment are indeed compatible, which makes the integration of the ecosystem service concept possible. We conclude that the linkage of the scientifically validated concept of ecosystem services with the policy concept of impact assessment has the potential of improving the credibility of the latter.
|
|
|
Murat, M., Malinowska, I., Hoffmann, H., & Baranowski, P. (2016). Statistical modelling of agrometeorological time series by exponential smoothing. International Agrophysics, 30(1), 57–65.
Abstract: Meteorological time series are used in modelling agrophysical processes of the soil-plant-atmosphere system which determine plant growth and yield. Additionally, longterm meteorological series are used in climate change scenarios. Such studies often require forecasting or projection of meteorological variables, eg the projection of occurrence of the extreme events. The aim of the article was to determine the most suitable exponential smoothing models to generate forecast using data on air temperature, wind speed, and precipitation time series in Jokioinen (Finland), Dikopshof (Germany), Lleida (Spain), and Lublin (Poland). These series exhibit regular additive seasonality or non-seasonality without any trend, which is confirmed by their autocorrelation functions and partial autocorrelation functions. The most suitable models were indicated by the smallest mean absolute error and the smallest root mean squared error.
|
|