|
Jägermeyr, J., Gerten, D., Heinke, J., Schaphoff, S., Kummu, M., & Lucht, W. (2015). Water savings potentials of irrigation systems: global simulation of processes and linkages. Hydrol. Earth System Sci., 19(7), 3073–3091.
Abstract: Global agricultural production is heavily sustained by irrigation, but irrigation system efficiencies are often surprisingly low. However, our knowledge of irrigation efficiencies is mostly confined to rough indicative estimates for countries or regions that do not account for spatiotemporal heterogeneity due to climate and other biophysical dependencies. To allow for refined estimates of global agricultural water use, and of water saving and water productivity potentials constrained by biophysical processes and also nontrivial downstream effects, we incorporated a process-based representation of the three major irrigation systems (surface, sprinkler, and drip) into a bio- and agrosphere model, LPJmL. Based on this enhanced model we provide a gridded world map of irrigation efficiencies that are calculated in direct linkage to differences in system types, crop types, climatic and hydrologic conditions, and overall crop management. We find pronounced regional patterns in beneficial irrigation efficiency (a refined irrigation efficiency indicator accounting for crop-productive water consumption only), due to differences in these features, with the lowest values (< 30 %) in south Asia and sub-Saharan Africa and the highest values (> 60 %) in Europe and North America. We arrive at an estimate of global irrigation water withdrawal of 2469 km(3) (2004-2009 average); irrigation water consumption is calculated to be 1257 km(3), of which 608 km(3) are non-beneficially consumed, i.e., lost through evaporation, interception, and conveyance. Replacing surface systems by sprinkler or drip systems could, on average across the world’s river basins, reduce the non-beneficial consumption at river basin level by 54 and 76 %, respectively, while maintaining the current level of crop yields. Accordingly, crop water productivity would increase by 9 and 15 %, respectively, and by much more in specific regions such as in the Indus basin. This study significantly advances the global quantification of irrigation systems while providing a framework for assessing potential future transitions in these systems. In this paper, presented opportunities associated with irrigation improvements are significant and suggest that they should be considered an important means on the way to sustainable food security.
|
|
|
Lehtonen, H. S., & Irz, X. (2013). Impacts of reducing red meat consumption on agricultural production in Finland. Agriculture and Food Science, 22(3), 356–370.
Abstract: This paper summarises the simulated effects on Finnish agrcultural production and trade of a 20% decrease in Finnish demand for red meat (beef, pork, lamb). According to our results, reduced red meat consumption would be offset by increased consumption of poultry meat, eggs, dairy products and fish, as well as small increases in consumption of fruits and vegetables, peas, nuts, cereal products and sweets. By including the derived demand changes in an agricultural sector model, we show that livestock production in Finland, incentivised by national production-linked payments for milk and bovine animals, would decrease by much less than 20% due to the complex nature of agricultural production and trade. Overall, assuming unchanged consumer preferences and agricultural policy, a 20% reduction in red meat consumption is not likely to lead to a substantial decrease in livestock production or changed land use, or greenhouse gas emissions, from Finnish agriculture.
|
|
|
Valin, H., Sands, R. D., van der Mensbrugghe, D. and, Nelson, G. C., Ahammad, H., Blanc, E., et al. (2014). The future of food demand: Understanding differences in global economic models. Agric. Econ., 45(1), 51–67.
Abstract: Understanding the capacity of agricultural systems to feed the world population under climate change requires projecting future food demand. This article reviews demand modeling approaches from 10 global economic models participating in the Agricultural Model Intercomparison and Improvement Project (AgMIP). We compare food demand projections in 2050 for various regions and agricultural products under harmonized scenarios of socioeconomic development, climate change, and bioenergy expansion. In the reference scenario (SSP2), food demand increases by 59-98% between 2005 and 2050, slightly higher than the most recent FAO projection of 54% from 2005/2007. The range of results is large, in particular for animal calories (between 61% and 144%), caused by differences in demand systems specifications, and in income and price elasticities. The results are more sensitive to socioeconomic assumptions than to climate change or bioenergy scenarios. When considering a world with higher population and lower economic growth (SSP3), consumption per capita drops on average by 9\% for crops and 18% for livestock. The maximum effect of climate change on calorie availability is -6% at the global level, and the effect of biofuel production on calorie availability is even smaller.
|
|
|
von Lampe, M., Willenbockel, D., Ahammad, H., Blanc, E., Cai, Y., Calvin, K., et al. (2014). Why do global long-term scenarios for agriculture differ? An overview of the AgMIP Global Economic Model Intercomparison. Agric. Econ., 45(1), 3.
Abstract: Recent studies assessing plausible futures for agricultural markets and global food security have had contradictory outcomes. To advance our understanding of the sources of the differences, 10 global economic models that produce long-term scenarios were asked to compare a reference scenario with alternate socioeconomic, climate change, and bioenergy scenarios using a common set of key drivers. Several key conclusions emerge from this exercise: First, for a comparison of scenario results to be meaningful, a careful analysis of the interpretation of the relevant model variables is essential. For instance, the use of real world commodity prices differs widely across models, and comparing the prices without accounting for their different meanings can lead to misleading results. Second, results suggest that, once some key assumptions are harmonized, the variability in general trends across models declines but remains important. For example, given the common assumptions of the reference scenario, models show average annual rates of changes of real global producer prices for agricultural products on average ranging between -0.4% and +0.7% between the 2005 base year and 2050. This compares to an average decline of real agricultural prices of 4% p.a. between the 1960s and the 2000s. Several other common trends are shown, for example, relating to key global growth areas for agricultural production and consumption. Third, differences in basic model parameters such as income and price elasticities, sometimes hidden in the way market behavior is modeled, result in significant differences in the details. Fourth, the analysis shows that agro-economic modelers aiming to inform the agricultural and development policy debate require better data and analysis on both economic behavior and biophysical drivers. More interdisciplinary modeling efforts are required to cross-fertilize analyses at different scales.
|
|