|
Asseng, S., Ewert, F., Rosenzweig, C., Jones, J. W., Hatfield, J. L., Ruane, A. C., et al. (2013). Uncertainty in simulating wheat yields under climate change. Nat. Clim. Change, 3(9), 827–832.
Abstract: Projections of climate change impacts on crop yields are inherently uncertain(1). Uncertainty is often quantified when projecting future greenhouse gas emissions and their influence on climate(2). However, multi-model uncertainty analysis of crop responses to climate change is rare because systematic and objective comparisons among process-based crop simulation models(1,3) are difficult(4). Here we present the largest standardized model intercomparison for climate change impacts so far. We found that individual crop models are able to simulate measured wheat grain yields accurately under a range of environments, particularly if the input information is sufficient. However, simulated climate change impacts vary across models owing to differences in model structures and parameter values. A greater proportion of the uncertainty in climate change impact projections was due to variations among crop models than to variations among downscaled general circulation models. Uncertainties in simulated impacts increased with CO2 concentrations and associated warming. These impact uncertainties can be reduced by improving temperature and CO2 relationships in models and better quantified through use of multi-model ensembles. Less uncertainty in describing how climate change may affect agricultural productivity will aid adaptation strategy development and policymaking.
|
|
|
Bennetzen, E. H., Smith, P., & Porter, J. R. (2016). Agricultural production and greenhouse gas emissions from world regions—The major trends over 40 years. Glob. Environ. Change, 37, 43–55.
Abstract: Since 1970, global agricultural production has more than doubled with agriculture and land-use change now responsible for similar to 1/4 of greenhouse gas emissions from human activities. Yet, while greenhouse gas (GHG) emissions per unit of agricultural product have been reduced at a global level, trends in world regions have been quantified less thoroughly. The KPI (Kaya-Porter Identity) is a novel framework for analysing trends in agricultural production and land-use change and related GHG emissions. We apply this to assess trends and differences in nine world regions over the period 1970-2007. We use a deconstructed analysis of emissions from the mix of multiple sources, and show how each is changing in terms of absolute emissions on a per area and per produced unit basis, and how the change of emissions from each source contributes to the change in total emissions over time. The doubling of global agricultural production has mainly been delivered by developing and transitional countries, and this has been mirrored by increased GHG emissions. The decoupling of emissions from production shows vast regional differences. Our estimates show that emissions per unit crop (as kg CO2-equivalents per Giga Joule crop product), in Oceania, have been reduced by 94% from 1093 to 69; in Central & South America by 57% from 849 to 362; in sub-Saharan Africa by 27% from 421 to 309, and in Europe by 56% from 86 to 38. Emissions per unit livestock (as kg CO2-eq. GJ(-1) livestock product) have reduced; in sub-Saharan Africa by 24% from 6001 to 4580; in Central & South America by 61% from 3742 to 1448; in Central & Eastern Asia by 82% from 3,205 to 591, and; in North America by 28% from 878 to 632. In general, intensive and industrialised systems show the lowest emissions per unit of agricultural production. (C) 2016 Elsevier Ltd. All rights reserved.
|
|
|
Bennetzen, E. H., Smith, P., Soussana, J. - F., & Porter, J. R. (2012). Identity-based estimation of greenhouse gas emissions from crop production: case study from Denmark. European Journal of Agronomy, 41, 66–72.
Abstract: In order to feed the world we need innovative thinking on how to increase agricultural production whilst also mitigating climate change. Agriculture and land-use change are responsible for approximately one-third of total anthropogenic greenhouse gas (GHG) emissions but hold potential for climate change mitigation but are only tangentially included in UNFCCC mitigation policies. To get a full estimate of GHG emissions from agricultural crop production both energy-based emissions and land-based emissions need to be accounted for. Furthermore, the major mitigation potential is likely to be indirect reduction of emissions i.e. reducing emissions per unit of agricultural product rather than the absolute emissions per se. Hence the system productivity must be included in the same analysis. This paper presents the Kaya-Porter identity, derived from the Maya identity, as a new way to calculate GHG emissions from agricultural crop production by deconstructing emissions into five elements; the GHG intensity of the energy used for production (kg CO2-eq./MJ), energy intensity of the production (MJ/kg dry matter), areal productivity (kg dry matter/ha), areal land-based GHG emissions (CO2-eq./ha) and area (ha). These separate elements in the identity can be targeted in emissions reduction and mitigation policies and are useful to analyse past and current trends in emissions and to explore future scenarios. Using the Kaya-Porter identity we have performed a case study on Danish crop production and find emissions to have been reduced by 12% from 1992 to 2008, whilst yields per unit area have remained constant. Both land-based emissions and energy-based emissions have decreased, mainly due to a 41% reduction in nitrogen fertilizer use. The initial identity based analysis for crop production presented here needs to be extended to include livestock to reflect the entire agricultural production and food demand sectors, thereby permitting analysis of the trade-offs between animal and plant food production, human dietary preferences and population and resulting GHG emissions. (C) 2012 Elsevier B.V. All rights reserved.
|
|
|
Biewald, A., Rolinski, S., Lotze-Campen, H., Schmitz, C., & Dietrich, J. P. (2014). Valuing the impact of trade on local blue water. Ecol. Econ., 101, 43–53.
Abstract: International trade of agricultural goods impacts local water scarcity. By quantifying the effect of trade on crop production on grid-cell level and combining it with cell- and crop-specific virtual water contents, we are able to determine green and blue water consumption and savings. Connecting the information on trade-related blue water usage to water shadow prices gives us the possibility to value the impact of international food crop trade on local blue water resources. To determine the trade-related value of the blue water usage, we employ two models: first, an economic land- and water-use model, simulating agricultural trade, production and water-shadow prices and second, a global vegetation and agricultural model, modeling the blue and green virtual water content of the traded crops. Our study found that globally, the international trade of food crops saves blue water worth 2.4 billion US$. This net saving occurs despite the fact that Europe exports virtual blue water in food crops worth 3.1 billion US$. Countries in the Middle East and South Asia profit from trade by importing water intensive crops, countries in Southern Europe on the other hand export water intensive agricultural goods from water scarce sites, deteriorating local water scarcity. (C) 2014 Elsevier B.V. All rights reserved.
|
|
|
Bodirsky, B. L., Popp, A., Lotze-Campen, H., Dietrich, J. P., Rolinski, S., Weindl, I., et al. (2014). Reactive nitrogen requirements to feed the world in 2050 and potential to mitigate nitrogen pollution. Nat. Comm., 5, 3858.
Abstract: Reactive nitrogen (Nr) is an indispensable nutrient for agricultural production and human alimentation. Simultaneously, agriculture is the largest contributor to Nr pollution, causing severe damages to human health and ecosystem services. The trade-off between food availability and Nr pollution can be attenuated by several key mitigation options, including Nr efficiency improvements in crop and animal production systems, food waste reduction in households and lower consumption of Nr-intensive animal products. However, their quantitative mitigation potential remains unclear, especially under the added pressure of population growth and changes in food consumption. Here we show by model simulations, that under baseline conditions, Nr pollution in 2050 can be expected to rise to 102-156% of the 2010 value. Only under ambitious mitigation, does pollution possibly decrease to 36-76% of the 2010 value. Air, water and atmospheric Nr pollution go far beyond critical environmental thresholds without mitigation actions. Even under ambitious mitigation, the risk remains that thresholds are exceeded.
|
|