|
Ewert, F., Rötter, R. P., Bindi, M., Webber, H., Trnka, M., Kersebaum, K. C., et al. (2015). Crop modelling for integrated assessment of risk to food production from climate change. Env. Model. Softw., 72, 287–303.
Abstract: The complexity of risks posed by climate change and possible adaptations for crop production has called for integrated assessment and modelling (IAM) approaches linking biophysical and economic models. This paper attempts to provide an overview of the present state of crop modelling to assess climate change risks to food production and to which extent crop models comply with IAM demands. Considerable progress has been made in modelling effects of climate variables, where crop models best satisfy IAM demands. Demands are partly satisfied for simulating commonly required assessment variables. However, progress on the number of simulated crops, uncertainty propagation related to model parameters and structure, adaptations and scaling are less advanced and lagging behind IAM demands. The limitations are considered substantial and apply to a different extent to all crop models. Overcoming these limitations will require joint efforts, and consideration of novel modelling approaches.
|
|
|
Kersebaum, K. C., & Nendel, C. (2014). Site-specific impacts of climate change on wheat production across regions of Germany using different CO2 response functions. European Journal of Agronomy, 52, 22–32.
Abstract: Impact of climate change on crop growth, groundwater recharge and nitrogen leaching in winter wheat production in Germany was assessed using the agro-ecosystem model HERMES with a downscaled (WETTREG) climate change scenario A1B from the ECHAM5 global circulation model. Three alternative algorithms describing the impact of atmospheric CO2 concentration on crop growth (a simple Farquhar-type algorithm, a combined light-use efficiency – maximum assimilation approach and a simple scaling of the maximum assimilation rate) in combination with a Penman-Monteith approach which includes a simple stomata conduction model for evapotranspiration under changing CO2 concentrations were compared within the framework of the HERMES model. The effect of differences in regional climate change, site conditions and different CO2 algorithms on winter wheat yield, groundwater recharge and nitrogen leaching was assessed in 22 regional simulation case studies across Germany. Results indicate that the effects of climate change on wheat production will vary across Germany due to different regional expressions of climate change projection. Predicted yield changes between the reference period (1961-1990) and a future period (2021-2050) range from -0.4 t ha(-1), -0.8 t ha(-1) and -0.6 t ha(-1) at sites in southern Germany to +0.8 t ha(-1), +0.6 t ha(-1) and +0.8 t ha(-1) at coastal regions for the three CO2 algorithms, respectively. On average across all regions, a relative yield change of +0.9%, +3.0%, and +6.0%, respectively, was predicted for Germany. In contrast, a decrease of -11.6% was predicted without the consideration of a CO2 effect. However, simulated yield changes differed even within regions as site conditions had a strong influence on crop growth. Particularly, groundwater-affected sites showed a lower vulnerability to increasing drought risk. Groundwater recharge was estimated to change correspondingly to changes in precipitation. The consideration of the CO2 effect on transpiration in the model led to a prediction of higher rates of annual deep percolation (+16 mm on average across all sites), which was due to higher water-use efficiency of the crops. In contrast to groundwater recharge, simulated nitrogen leaching varied with the choice of the photosynthesis algorithm, predicting a slight reduction in most of the areas. The results underline the necessity of high-resolution data for model-based regional climate change impact assessment and development of adaptation measures. (C) 2013 Elsevier B.V. All rights reserved.
|
|
|
Moriondo, M., Ferrise, R., Trombi, G., Brilli, L., Dibari, C., & Bindi, M. (2015). Modelling olive trees and grapevines in a changing climate. Env. Model. Softw., 72, 387–401.
Abstract: The models developed for simulating olive tree and grapevine yields were reviewed by focussing on the major limitations of these models for their application in a changing climate. Empirical models, which exploit the statistical relationship between climate and yield, and process based models, where crop behaviour is defined by a range of relationships describing the main plant processes, were considered. The results highlighted that the application of empirical models to future climatic conditions (i.e. future climate scenarios) is unreliable since important statistical approaches and predictors are still lacking. While process-based models have the potential for application in climate-change impact assessments, our analysis demonstrated how the simulation of many processes affected by warmer and CO2-enriched conditions may give rise to important biases. Conversely, some crop model improvements could be applied at this stage since specific sub-models accounting for the effect of elevated temperatures and CO2 concentration were already developed. (C) 2014 Elsevier Ltd. All rights reserved.
|
|
|
Sakschewski, B., von Bloh, W., Huber, V., Müller, C., & Bondeau, A. (2014). Feeding 10 billion people under climate change: How large is the production gap of current agricultural systems. Ecol. Model., 288, 103–111.
Abstract: The human population is projected to reach more than 10 billion in the year 2100. Together with changing consumption pattern, population growth will lead to increasing food demand. The question arises whether or not the Earth is capable of fulfilling this demand. In this study, we approach this question by estimating the carrying capacity of current agricultural systems (K-C), which does not measure the maximum number of people the Earth is likely to feed in the future, but rather allows for an indirect assessment of the increases in agricultural productivity required to meet demands. We project agricultural food production under progressing climate change using the state-of-the-art dynamic global vegetation model LPJmL, and input data of 3 climate models. For 1990 to 2100 the worldwide annual caloric yield of the most important 11 crop types is simulated. Model runs with and without elevated atmospheric CO2 concentrations are performed in order to investigate CO2 fertilization effects. Country-specific per-capita caloric demands fixed at current levels and changing demands based on future GDP projections are considered to assess the role of future dietary shifts. Our results indicate that current population projections may considerably exceed the maximum number of people that can be fed globally if climate change is not accompanied by significant changes in land use, agricultural efficiencies and/or consumption pathways. We estimate the gap between projected population size and K-C to reach 2 to 6.8 billion people by 2100. We also present possible caloric self-supply changes between 2000 and 2100 for all countries included in this study. The results show that predominantly developing countries in tropical and subtropical regions will experience vast decreases of self-supply. Therefore, this study is important for planning future large-scale agricultural management, as well as the critical assessment of population projections, which should take food-mediated climate change feedbacks into account
|
|
|
Tao, F., Palosuo, T., Roetter, R. P., Hernandez Diaz-Ambrona, C. G., Ines Minguez, M., Semenov, M. A., et al. (2020). Why do crop models diverge substantially in climate impact projections? A comprehensive analysis based on eight barley crop models. Agricultural and Forest Meteorology, 281, 107851.
Abstract: Robust projections of climate impact on crop growth and productivity by crop models are key to designing effective adaptations to cope with future climate risk. However, current crop models diverge strongly in their climate impact projections. Previous studies tried to compare or improve crop models regarding the impact of one single climate variable. However, this approach is insufficient, considering that crop growth and yield are affected by the interactive impacts of multiple climate change factors and multiple interrelated biophysical processes. Here, a new comprehensive analysis was conducted to look holistically at the reasons why crop models diverge substantially in climate impact projections and to investigate which biophysical processes and knowledge gaps are key factors affecting this uncertainty and should be given the highest priorities for improvement. First, eight barley models and eight climate projections for the 2050s were applied to investigate the uncertainty from crop model structure in climate impact projections for barley growth and yield at two sites: Jokioinen, Finland (Boreal) and Lleida, Spain (Mediterranean). Sensitivity analyses were then conducted on the responses of major crop processes to major climatic variables including temperature, precipitation, irradiation, and CO2, as well as their interactions, for each of the eight crop models. The results showed that the temperature and CO2 relationships in the models were the major sources of the large discrepancies among the models in climate impact projections. In particular, the impacts of increases in temperature and CO2 on leaf area development were identified as the major causes for the large uncertainty in simulating changes in evapotranspiration, above-ground biomass, and grain yield. Our findings highlight that advancements in understanding the basic processes and thresholds by which climate warming and CO2 increases will affect leaf area development, crop evapotranspiration, photosynthesis, and grain formation in contrasting environments are needed for modeling their impacts.
|
|