|
Camacho, C., & Pérez-Barahona, A. (2015). Land use dynamics and the environment. Journal of Economic Dynamics and Control, 52, 96–118.
Abstract: This paper builds a benchmark framework to study optimal land use, encompassing land use activities and environmental degradation. We focus on the spatial externalities of land use as drivers of spatial patterns: land is immobile by nature, but local actions affect the whole space since pollution flows across locations resulting in both local and global damages. We prove that the decision maker problem has a solution, and characterize the corresponding social optimum trajectories by means of the Pontryagin conditions. We also show that the existence and uniqueness of time-invariant solutions are not in general guaranteed. Finally, a global dynamic algorithm is proposed in order to illustrate the spatial-dynamic richness of the model. We find that our simple set-up already reproduces a great variety of spatial patterns related to the interaction between land use activities and the environment. In particular, abatement technology turns out to play a central role as pollution stabilizer, allowing the economy to reach a time-invariant equilibrium that can be spatially heterogeneous. (C) 2014 Elsevier B.V. All rights reserved.
|
|
|
De Sanctis, G., Roggero, P. P., Seddaiu, G., Orsini, R., Porter, C. H., & Jones, J. W. (2012). Long-term no tillage increased soil organic carbon content of rain-fed cereal systems in a Mediterranean area. European Journal of Agronomy, 40, 18–27.
Abstract: The differential impact on soil organic carbon (SOC) of applying no tillage (NT) compared to conventional tillage (CT, i.e. mouldboard ploughing), along with three rates of nitrogen (N) fertilizer application (0,90 and 180 kg ha(-1) y(-1)), was studied under rain-fed Mediterranean conditions in a long-term experiment based on a durum wheat-maize rotation, in which crop residues were left on the soil (NT) or incorporated (CT). Observed SOC content following 8 and 12 years of continuous treatment application was significantly higher in the top 10 cm of the soil under NT than CT, but it was similar in the 10-40 cm layer. NT grain yields for both maize and durum wheat were below those attained under CT (on average 32% and 14% lower respectively) at a given rate of N fertilizer application. Soil, climate and crop data over 5 years were used to calibrate DSSAT model in order to simulate the impact of the different management practices over a 50-year period. Good agreement was obtained between observed and simulated values for crops grain yield, above-ground biomass and observed SOC values. Results from the simulations showed that under NT the weeds growing during the intercrop fallow period made a significant contribution to the observed SOC increase. When the contribution of the weed fallow was considered, NT significantly increased SOC in the top 40 cm of the soil at an average rate of 0.43, 0.31 and 0.03 t ha(-1) per year, respectively for 180,90 and 0 kg N ha(-1) year(-1), within the simulated 50 years. Under CT, a significant SOC increase was simulated under N180 and a significant decrease when no fertilizer was supplied.
|
|
|
Dietrich, J. P., Popp, A., & Lotze-Campen, H. (2013). Reducing the loss of information and gaining accuracy with clustering methods in a global land-use model. Ecol. Model., 263, 233–243.
Abstract: Global land-use models have to deal with processes on several spatial scales, ranging from the global scale down to the farm level. The increasing complexity of modern land-use models combined with the problem of limited computational resources represents a challenge to modelers. One solution of this problem is to perform spatial aggregation based on a regular grid or administrative units such as countries. Unfortunately this type of aggregation flattens many regional differences and produces a homogenized map of the world. In this paper we present an alternative aggregation approach using clustering methods. Clustering reduces the loss of information due to aggregation by choosing an appropriate aggregation pattern. We investigate different clustering methods, examining their quality in terms of information conservation. Our results indicate that clustering is always a good choice and preferable compared to grid-based aggregation. Although all the clustering methods we tested delivered a higher degree of information conservation than grid-based aggregation, the choice of clustering method is not arbitrary. Comparing outputs of a model fed with original data and a model fed with aggregated data, bottom-up clustering delivered the best results for the whole range of numbers of clusters tested. (C) 2013 Elsevier B.V. All rights reserved.
|
|
|
Eitzinger, J., Thaler, S., Schmid, E., Strauss, F., Ferrise, R., Moriondo, M., et al. (2013). Sensitivities of crop models to extreme weather conditions during flowering period demonstrated for maize and winter wheat in Austria. J. Agric. Sci., 151(6), 813–835.
Abstract: The objective of the present study was to compare the performance of seven different, widely applied crop models in predicting heat and drought stress effects. The study was part of a recent suite of model inter-comparisons initiated at European level and constitutes a component that has been lacking in the analysis of sources of uncertainties in crop models used to study the impacts of climate change. There was a specific focus on the sensitivity of models for winter wheat and maize to extreme weather conditions (heat and drought) during the short but critical period of 2 weeks after the start of flowering. Two locations in Austria, representing different agro-climatic zones and soil conditions, were included in the simulations over 2 years, 2003 and 2004, exhibiting contrasting weather conditions. In addition, soil management was modified at both sites by following either ploughing or minimum tillage. Since no comprehensive field experimental data sets were available, a relative comparison of simulated grain yields and soil moisture contents under defined weather scenarios with modified temperatures and precipitation was performed for a 2-week period after flowering. The results may help to reduce the uncertainty of simulated crop yields to extreme weather conditions through better understanding of the models’ behaviour. Although the crop models considered (DSSAT, EPIC, WOFOST, AQUACROP, FASSET, HERMES and CROPSYST) mostly showed similar trends in simulated grain yields for the different weather scenarios, it was obvious that heat and drought stress caused by changes in temperature and/or precipitation for a short period of 2 weeks resulted in different grain yields simulated by different models. The present study also revealed that the models responded differently to changes in soil tillage practices, which affected soil water storage capacity.
|
|
|
Ewert, F., Rötter, R. P., Bindi, M., Webber, H., Trnka, M., Kersebaum, K. C., et al. (2015). Crop modelling for integrated assessment of risk to food production from climate change. Env. Model. Softw., 72, 287–303.
Abstract: The complexity of risks posed by climate change and possible adaptations for crop production has called for integrated assessment and modelling (IAM) approaches linking biophysical and economic models. This paper attempts to provide an overview of the present state of crop modelling to assess climate change risks to food production and to which extent crop models comply with IAM demands. Considerable progress has been made in modelling effects of climate variables, where crop models best satisfy IAM demands. Demands are partly satisfied for simulating commonly required assessment variables. However, progress on the number of simulated crops, uncertainty propagation related to model parameters and structure, adaptations and scaling are less advanced and lagging behind IAM demands. The limitations are considered substantial and apply to a different extent to all crop models. Overcoming these limitations will require joint efforts, and consideration of novel modelling approaches.
|
|