|
Asseng, S., Ewert, F., Martre, P., Rötter, R. P., Lobell, D. B., Cammarano, D., et al. (2014). Rising temperatures reduce global wheat production. Nat. Clim. Change, 5(2), 143–147.
Abstract: Crop models are essential tools for assessing the threat of climate change to local and global food production1. Present models used to predict wheat grain yield are highly uncertain when simulating how crops respond to temperature2. Here we systematically tested 30 different wheat crop models of the Agricultural Model Intercomparison and Improvement Project against field experiments in which growing season mean temperatures ranged from 15 °C to 32 °C, including experiments with artificial heating. Many models simulated yields well, but were less accurate at higher temperatures. The model ensemble median was consistently more accurate in simulating the crop temperature response than any single model, regardless of the input information used. Extrapolating the model ensemble temperature response indicates that warming is already slowing yield gains at a majority of wheat-growing locations. Global wheat production is estimated to fall by 6% for each °C of further temperature increase and become more variable over space and time.
|
|
|
Below, T. B., Mutabazi, K. D., Kirschke, D., Franke, C., Sieber, S., Siebert, R., et al. (2012). Can farmers’ adaptation to climate change be explained by socio-economic household-level variables. Glob. Environ. Change, 22(1), 223–235.
Abstract: A better understanding of processes that shape farmers’ adaptation to climate change is critical to identify vulnerable entities and to develop well-targeted adaptation policies. However, it is currently poorly understood what determines farmers’ adaptation and how to measure it. In this study, we develop an activity-based adaptation index (AAI) and explore the relationship between socioeconomic variables and farmers’ adaptation behavior by means of an explanatory factor analysis and a multiple linear regression model using latent variables. The model was tested in six villages situated in two administrative wards in the Morogoro region of Tanzania. The Mlali ward represents a system of relatively high agricultural potential, whereas the Gairo ward represents a system of low agricultural potential. A household survey, a rapid rural appraisal and, a stakeholder workshop were used for data collection. The data were analyzed using factor analysis, multiple linear regression, descriptive statistical methods and qualitative content analysis. The empirical results are discussed in the context of theoretical concepts of adaptation and the sustainable livelihood approach. We found that public investment in rural infrastructure, in the availability and technically efficient use of inputs, in a good education system that provides equal chances for women, and in the strengthening of social capital, agricultural extension and, microcredit services are the best means of improving the adaptation of the farmers from the six villages in Gairo and Mlali. We conclude that the newly developed AAI is a simple but promising way to capture the complexity of adaptation processes that addresses a number of shortcomings of previous index studies.
|
|
|
De Pascale, S., Maggio, A., Orsini, F., Stanghellini, C., & Heuvelink, E. (2015). Growth response and radiation use efficiency in tomato exposed to short-term and long-term salinized soils. Scientia Horticulturae, 189, 139–149.
Abstract: Farmlands are increasingly exposed to degradation phenomena associated to climate change and agricultural practices, including irrigation. It is estimated that about 20% of the world’s irrigated land is salt affected. In this paper we aimed at evaluating the effect of seasonal and multiannual soil satinization on growth, yield, and radiation use efficiency of tomato in open field. Two field experiments were carried out at the Experimental Station of the University of Naples Federico II (latitude 40 degrees 31’N longitude 14 degrees 58’E) (Italy) on tomato during 2004 and 2005 to study the effect of five levels of water salinity: NSC (EC = 0.5 dS m(-1)), SW1 (EC= 2.3 dS m(-1)), SW2 (EC= 4.4 dS m(-1)), SW3 (EC= 8.5 dS m(-1)) and SW4 (EC= 15.7 dS m(-1)) in a soil exposed to one-season salinization (ST = short-term) and an adjacent soil exposed to >20 years salinization (LT = long-term). Plant growth, yield and fruit quality (pH, EC, total soluble solids and the concentration of reducing sugars and of titratable acids), and plant water relations were measured and radiation use efficiency (RUE) was calculated. Increasing water salinity negatively affected the leaf area index (LAI), radiation use efficiency (RUE) and above-ground dry weight (DW) accumulation resulting in lower total and marketable yield. Maximum total and marketable yield obtained with the NSC treatment were respectively 117.9 and 111.0 Mg ha(-1) in 2004 and 113.1 and 107.9 Mg ha(-1) in 2005. Although the smaller leaf area of salinized plants was largely responsible for reduced RUE, we found approximately 50% of this reduction to be accounted for by processes other than changed crop architecture. These may include an increased stomatal resistance, increased mesophyll resistance and other impaired metabolic functions that may occur at high salinity. Remarkably, we found that LT salinized plants had a slightly better efficiency of use of intercepted radiation (RUEIR) at a given EC of soil extract than ST salinized plants indicating that LT salinization, and consequent permanent modifications of the soil physical properties, may trigger additional physiological mechanisms of adaptation compared to ST salinized plants. These differences are relevant in light of the evolution of salinized areas, also in response to climate change.
|
|
|
Eyshi Rezaei, E., Siebert, S., & Ewert, F. (2015). Impact of data resolution on heat and drought stress simulated for winter wheat in Germany. European Journal of Agronomy, 65, 69–82.
Abstract: Heat and drought stress can reduce crop yields considerably which is increasingly assessed with crop models for larger areas. Applying these models originally developed for the field scale at large spatial extent typically implies the use of input data with coarse resolution. Little is known about the effect of data resolution on the simulated impact of extreme events like heat and drought on crops. Hence, in this study the effect of input and output data aggregation on simulated heat and drought stress and their impact on yield of winter wheat is systematically analyzed. The crop model SIMPLACE was applied for the period 1980-2011 across Germany at a resolution of 1 km x 1 km. Weather and soil input data and model output data were then aggregated to 10 km x 10 km, 25 km x 25 km, 50 km x 50 km and 100 km x 100 km resolution to analyze the aggregation effect on heat and drought stress and crop yield. We found that aggregation of model input and output data barely influenced the mean and median of heat and drought stress reduction factors and crop yields simulated across Germany. However, data aggregation resulted in less spatial variability of model results and a reduced severity of simulated stress events, particularly for regions with high heterogeneity in weather and soil conditions. Comparisons of simulations at coarse resolution with those at high resolution showed distinct patterns of positive and negative deviations which compensated each other so that aggregation effects for large regions were small for mean or median yields. Therefore, modelling at a resolution of 100 km x 100 km was sufficient to determine mean wheat yield as affected by heat and drought stress for Germany. Further research is required to clarify whether the results can be generalized across crop models differing in structure and detail. Attention should also be given to better understand the effect of data resolution on interactions between heat and drought impacts. (C) 2015 Elsevier B.V. All rights reserved.
|
|
|
Heinemann, A. B., Barrios-Perez, C., Ramirez-Villegas, J., Arango-Londoño, D., Bonilla-Findji, O., Medeiros, J. C., et al. (2015). Variation and impact of drought-stress patterns across upland rice target population of environments in Brazil. J. Experim. Bot., 66(12), 3625–3638.
Abstract: The upland rice (UR) cropped area in Brazil has decreased in the last decade. Importantly, a portion of this decrease can be attributed to the current UR breeding programme strategy, according to which direct grain yield selection is targeted primarily to the most favourable areas. New strategies for more-efficient crop breeding under non-optimal conditions are needed for Brazil’s UR regions. Such strategies should include a classification of spatio-temporal yield variations in environmental groups, as well as a determination of prevalent drought types and their characteristics (duration, intensity, phenological timing, and physiological effects) within those environmental groups. This study used a process-based crop model to support the Brazilian UR breeding programme in their efforts to adopt a new strategy that accounts for the varying range of environments where UR is currently cultivated. Crop simulations based on a commonly grown cultivar (BRS Primavera) and statistical analyses of simulated yield suggested that the target population of environments can be divided into three groups of environments: a highly favorable environment (HFE, 19% of area), a favorable environment (FE, 44%), and least favourable environment (LFE, 37%). Stress-free conditions dominated the HFE group (69% likelihood) and reproductive stress dominated the LFE group (68% likelihood), whereas reproductive and terminal drought stress were found to be almost equally likely to occur in the FE group. For the best and worst environments, we propose specific adaptation focused on the representative stress, while for the FE, wide adaptation to drought is suggested. ‘Weighted selection’ is also a possible strategy for the FE and LFE environment groups.
|
|