|
Angulo, C., Rötter, R., Trnka, M., Pirttioja, N., Gaiser, T., Hlavinka, P., et al. (2013). Characteristic ‘fingerprints’ of crop model responses to weather input data at different spatial resolutions. European Journal of Agronomy, 49, 104–114.
Abstract: Crop growth simulation models are increasingly used for regionally assessing the effects of climate change and variability on crop yields. These models require spatially and temporally detailed, location-specific, environmental (weather and soil) and management data as inputs, which are often difficult to obtain consistently for larger regions. Aggregating the resolution of input data for crop model applications may increase the uncertainty of simulations to an extent that is not well understood. The present study aims to systematically analyse the effect of changes in the spatial resolution of weather input data on yields simulated by four crop models (LINTUL-SLIM, DSSAT-CSM, EPIC and WOFOST) which were utilized to test possible interactions between weather input data resolution and specific modelling approaches representing different degrees of complexity. The models were applied to simulate grain yield of spring barley in Finland for 12 years between 1994 and 2005 considering five spatial resolutions of daily weather data: weather station (point) and grid-based interpolated data at resolutions of 10 km x 10 km; 20 km x 20 km; 50 km x 50 km and 100 km x 100 km. Our results show that the differences between models were larger than the effect of the chosen spatial resolution of weather data for the considered years and region. When displaying model results graphically, each model exhibits a characteristic ‘fingerprint’ of simulated yield frequency distributions. These characteristic distributions in response to the inter-annual weather variability were independent of the spatial resolution of weather input data. Using one model (LINTUL-SLIM), we analysed how the aggregation strategy, i.e. aggregating model input versus model output data, influences the simulated yield frequency distribution. Results show that aggregating weather data has a smaller effect on the yield distribution than aggregating simulated yields which causes a deformation of the model fingerprint. We conclude that changes in the spatial resolution of weather input data introduce less uncertainty to the simulations than the use of different crop models but that more evaluation is required for other regions with a higher spatial heterogeneity in weather conditions, and for other input data related to soil and crop management to substantiate our findings. Our results provide further evidence to support other studies stressing the importance of using not just one, but different crop models in climate assessment studies. (C) 2013 Elsevier B.V. All rights reserved.
|
|
|
Hoffmann, H., Zhao, G., Asseng, S., Bindi, M., Biernath, C., Constantin, J., et al. (2016). Impact of spatial soil and climate input data aggregation on regional yield simulations. PLoS One, 11(4), e0151782.
Abstract: We show the error in water-limited yields simulated by crop models which is associated with spatially aggregated soil and climate input data. Crop simulations at large scales (regional, national, continental) frequently use input data of low resolution. Therefore, climate and soil data are often generated via averaging and sampling by area majority. This may bias simulated yields at large scales, varying largely across models. Thus, we evaluated the error associated with spatially aggregated soil and climate data for 14 crop models. Yields of winter wheat and silage maize were simulated under water-limited production conditions. We calculated this error from crop yields simulated at spatial resolutions from 1 to 100 km for the state of North Rhine-Westphalia, Germany. Most models showed yields biased by <15% when aggregating only soil data. The relative mean absolute error (rMAE) of most models using aggregated soil data was in the range or larger than the inter-annual or inter-model variability in yields. This error increased further when both climate and soil data were aggregated. Distinct error patterns indicate that the rMAE may be estimated from few soil variables. Illustrating the range of these aggregation effects across models, this study is a first step towards an ex-ante assessment of aggregation errors in large-scale simulations.
|
|
|
Hoffmann, H., Zhao, G., van Bussel, L. G. J., Enders, A., Specka, X., Sosa, C., et al. (2015). Variability of effects of spatial climate data aggregation on regional yield simulation by crop models. Clim. Res., 65, 53–69.
Abstract: Field-scale crop models are often applied at spatial resolutions coarser than that of the arable field. However, little is known about the response of the models to spatially aggregated climate input data and why these responses can differ across models. Depending on the model, regional yield estimates from large-scale simulations may be biased, compared to simulations with high-resolution input data. We evaluated this so-called aggregation effect for 13 crop models for the region of North Rhine-Westphalia in Germany. The models were supplied with climate data of 1 km resolution and spatial aggregates of up to 100 km resolution raster. The models were used with 2 crops (winter wheat and silage maize) and 3 production situations (potential, water-limited and nitrogen-water-limited growth) to improve the understanding of errors in model simulations related to data aggregation and possible interactions with the model structure. The most important climate variables identified in determining the model-specific input data aggregation on simulated yields were mainly related to changes in radiation (wheat) and temperature (maize). Additionally, aggregation effects were systematic, regardless of the extent of the effect. Climate input data aggregation changed the mean simulated regional yield by up to 0.2 t ha(-1), whereas simulated yields from single years and models differed considerably, depending on the data aggregation. This implies that large-scale crop yield simulations are robust against climate data aggregation. However, large-scale simulations can be systematically biased when being evaluated at higher temporal or spatial resolution depending on the model and its parameterization.
|
|