|
Hoffmann, H., Zhao, G., van Bussel, L. G. J., Enders, A., Specka, X., Sosa, C., et al. (2015). Variability of effects of spatial climate data aggregation on regional yield simulation by crop models. Clim. Res., 65, 53–69.
Abstract: Field-scale crop models are often applied at spatial resolutions coarser than that of the arable field. However, little is known about the response of the models to spatially aggregated climate input data and why these responses can differ across models. Depending on the model, regional yield estimates from large-scale simulations may be biased, compared to simulations with high-resolution input data. We evaluated this so-called aggregation effect for 13 crop models for the region of North Rhine-Westphalia in Germany. The models were supplied with climate data of 1 km resolution and spatial aggregates of up to 100 km resolution raster. The models were used with 2 crops (winter wheat and silage maize) and 3 production situations (potential, water-limited and nitrogen-water-limited growth) to improve the understanding of errors in model simulations related to data aggregation and possible interactions with the model structure. The most important climate variables identified in determining the model-specific input data aggregation on simulated yields were mainly related to changes in radiation (wheat) and temperature (maize). Additionally, aggregation effects were systematic, regardless of the extent of the effect. Climate input data aggregation changed the mean simulated regional yield by up to 0.2 t ha(-1), whereas simulated yields from single years and models differed considerably, depending on the data aggregation. This implies that large-scale crop yield simulations are robust against climate data aggregation. However, large-scale simulations can be systematically biased when being evaluated at higher temporal or spatial resolution depending on the model and its parameterization.
|
|
|
Kollas, C., Kersebaum, K. C., Nendel, C., Manevski, K., Müller, C., Palosuo, T., et al. (2015). Crop rotation modelling—A European model intercomparison. European Journal of Agronomy, 70, 98–111.
Abstract: • First model inter-comparison on crop rotations. • Continuous simulation of multi-year crop rotations yields outperformed single-year simulation. • Low accuracy of yield predictions in less commonly modelled crops such as potato, radish, grass vegetation. • Multi-model mean prediction was found to minimise the likely error arising from single-model predictions. • The representation of intermediate crops and carry-over effects in the models require further research efforts.
Diversification of crop rotations is considered an option to increase the resilience of European crop production under climate change. So far, however, many crop simulation studies have focused on predicting single crops in separate one-year simulations. Here, we compared the capability of fifteen crop growth simulation models to predict yields in crop rotations at five sites across Europe under minimal calibration. Crop rotations encompassed 301 seasons of ten crop types common to European agriculture and a diverse set of treatments (irrigation, fertilisation, CO2 concentration, soil types, tillage, residues, intermediate or catch crops). We found that the continuous simulation of multi-year crop rotations yielded results of slightly higher quality compared to the simulation of single years and single crops. Intermediate crops (oilseed radish and grass vegetation) were simulated less accurately than main crops (cereals). The majority of models performed better for the treatments of increased CO2 and nitrogen fertilisation than for irrigation and soil-related treatments. The yield simulation of the multi-model ensemble reduced the error compared to single-model simulations. The low degree of superiority of continuous simulations over single year simulation was caused by (a) insufficiently parameterised crops, which affect the performance of the following crop, and (b) the lack of growth-limiting water and/or nitrogen in the crop rotations under investigation. In order to achieve a sound representation of crop rotations, further research is required to synthesise existing knowledge of the physiology of intermediate crops and of carry-over effects from the preceding to the following crop, and to implement/improve the modelling of processes that condition these effects.
|
|
|
Lorite, I. J., García-Vila, M., Santos, C., Ruiz-Ramos, M., & Fereres, E. (2013). AquaData and AquaGIS: Two computer utilities for temporal and spatial simulations of water-limited yield with AquaCrop. Computers and Electronics in Agriculture, 96, 227–237.
Abstract: The crop simulation model AquaCrop, recently developed by FAO can be used for a wide range of purposes. However, in its present form, its use over large areas or for applications that require a large number of simulations runs (e.g., long-term analysis), is not practical without developing software to facilitate such applications. Two tools for managing the inputs and outputs of AquaCrop, named AquaData and AquaGIS, have been developed for this purpose and are presented here. Both software utilities have been programmed in Delphi v. 5 and in addition, AquaGIS requires the Geographic Information System (GIS) programming tool MapObjects. These utilities allow the efficient management of input and output files, along with a GIS module to develop spatial analysis and effect spatial visualization of the results, facilitating knowledge dissemination. A sample of application of the utilities is given here, as an AquaCrop simulation analysis of impact of climate change on wheat yield in Southern Spain, which requires extensive input data preparation and output processing. The use of AquaCrop without the two utilities would have required approximately 1000 h of work, while the utilization of AquaData and AquaGIS reduced that time by more than 99%. Furthermore, the use of GIS, made it possible to perform a spatial analysis of the results, thus providing a new option to extend the use of the AquaCrop model to scales requiring spatial and temporal analyses. (C) 2013 Elsevier B.V. All rights reserved.
|
|
|
Palosuo, T., Rotter, R. P., Salo, T., Peltonen-Sainio, P., Tao, F., & Lehtonen, H. (2015). Effects of climate and historical adaptation measures on barley yield trends in Finland. Clim. Res., 65, 221–236.
Abstract: In this study, the WOFOST crop simulation model was used together with comprehensive empirical databases on barley Hordeum vulgare L. to study the contributions of different yield-determining and -limiting factors to observed trends of barley yield in Finland from 1988 to 2008. Simulations were performed at 3 study sites representing different agro-ecological zones, and compared with the data from experimental sites and that reported by local farmers. Yield gaps between simulated potential yields and farmers’ yields and their trends were assessed. Positive observed yield trends of Finnish barley mostly resulted from the development and usage of new, high-yielding cultivars. Simulated trends in climatic potential and water-limited potential yields of individual cultivars showed a slight declining trend. Yield gaps showed an increasing trend in 2 out of 3 study areas. Since the mid-1990s, a major reason for this has been the lack of market and policy incentives favouring crop management decisions, i.e. annual fertilisation, soil maintenance, drainage and crop rotation decisions, aiming for higher yields. The study indicates potential options for increasing or maintaining barley yields in the future. The breeding of new climate-resilient cultivars is the primary option. However, this needs to work alongside overall adjustments to farm management and must be supported by financial incentives for farmers to increase yields.
|
|
|
Perego, A., Giussani, A., Fumagalli, M., Sanna, M., Chiodini, M., Carozzi, M., et al. (2013). Crop rotation, fertilizer types and application timing affecting nitrogen leaching in nitrate vulnerable zones in Po Valley. Italian Journal of Agrometeorology, 3(2), 39–50.
Abstract: A critical analysis was performed to evaluate the potential risk of nitrate leaching towards groundwater in three Nitrate Vulnerable Zones (NVZs) of the Lombardia plain by applying the ARMOSA crop simulation model over a 20 years period (1988-2007). Each studied area was characterized by (i) two representative soil types, (ii) a meteorological data set, (iii) four crop rotations according to the regional land use, (iv) organic N load, calculated on the basis of livestock density. We simulated 3 scenarios defined by different fertilization time and amount of mineral and organic fertilizers. The A scenario involved no limitation in organic N application, while under the B and C scenarios the N organic amount was 170 and 250 kg N ha(-1)y(-1), respectively. The C scenario was compliant with the requirement of the 2012 Italian derogation, allowing only the use of organic manure with an efficiency greater than 65%. The model results highlighted that nitrate leaching was significantly reduced passing from the A scenario to the B and C ones (p<0.01); on average nitrogen losses decreased by up to 53% from A to B and up to 75% from A to C.
|
|