|
Bannink, A., van Lingen, H. J., Ellis, J. L., France, J., & Dijkstra, J. (2016). The contribution of mathematical modeling to understanding dynamic aspects of rumen metabolism. Frontiers in Microbiology, 7, 1820.
Abstract: All mechanistic rumen models cover the main drivers of variation in rumen function, which are feed intake, the differences between feedstuffs and feeds in their intrinsic rumen degradation characteristics, and fractional outflow rate of fluid and particulate matter. Dynamic modeling approaches are best suited to the prediction of more nuanced responses in rumen metabolism, and represent the dynamics of the interactions between substrates and micro-organisms and inter-microbial interactions. The concepts of dynamics are discussed for the case of rumen starch digestion as influenced by starch intake rate and frequency of feed intake, and for the case of fermentation of fiber in the large intestine. Adding representations of new functional classes of micro-organisms (i.e., with new characteristics from the perspective of whole rumen function) in rumen models only delivers new insights if complemented by the dynamics of their interactions with other functional classes. Rumen fermentation conditions have to be represented due to their profound impact on the dynamics of substrate degradation and microbial metabolism. Although the importance of rumen pH is generally acknowledged, more emphasis is needed on predicting its variation as well as variation in the processes that underlie rumen fluid dynamics. The rumen wall has an important role in adapting to rapid changes in the rumen environment, clearing of volatile fatty acids (VFA), and maintaining rumen pH within limits. Dynamics of rumen wall epithelia and their role in VFA absorption needs to be better represented in models that aim to predict rumen responses across nutritional or physiological states. For a detailed prediction of rumen N balance there is merit in a dynamic modeling approach compared to the static approaches adopted in current protein evaluation systems. Improvement is needed on previous attempts to predict rumen VFA profiles, and this should be pursued by introducing factors that relate more to microbial metabolism. For rumen model construction, data on rumen microbiomes are preferably coupled with knowledge consolidated in rumen models instead of relying on correlations with rather general aspects of treatment or animal. This helps to prevent the disregard of basic principles and underlying mechanisms of whole rumen function.
|
|
|
Carabano, M. J., Logar, B., Bormann, J., Minet, J., Vanrobays, M. L., Diaz, C., et al. (2016). Modeling heat stress under different environmental conditions. J. Dairy Sci., 99(5), 3798–3814.
Abstract: Renewed interest in heat stress effects on livestock productivity derives from climate change, which is expected to increase temperatures and the frequency of extreme weather events. This study aimed at evaluating the effect of temperature and humidity on milk production in highly selected dairy cattle populations across 3 European regions differing in climate and production systems to detect differences and similarities that can be used to optimize heat stress (HS) effect modeling. Milk, fat, and protein test day data from official milk recording for 1999 to 2010 in 4 Holstein populations located in the Walloon Region of Belgium (BEL), Luxembourg (LUX), Slovenia (SLO), and southern Spain (SPA) were merged with temperature and humidity data provided by the state meteorological agencies. After merging, the number of test day records/cows per trait ranged from 686,726/49,655 in SLO to 1,982,047/136,746 in BEL. Values for the daily average and maximum temperature-humidity index (THIavg and THImax) ranges for THIavg/THImax were largest in SLO (22-74/28-84) and shortest in SPA (39-76/46-83). Change point techniques were used to determine comfort thresholds, which differed across traits and climatic regions. Milk yield showed an inverted U-shaped pattern of response across the THI scale with a HS threshold around 73 THImax units. For fat and protein, thresholds were lower than for milk yield and were shifted around 6 THI units toward larger values in SPA compared with the other countries. Fat showed lower HS thresholds than protein traits in all countries. The traditional broken line model was compared with quadratic and cubic fits of the pattern of response in production to increasing heat loads. A cubic polynomial model allowing for individual variation in patterns of response and THIavg as heat load measure showed the best statistical features. Higher/lower producing animals showed less/more persistent production (quantity and quality) across the THI scale. The estimated correlations between comfort and THIavg values of 70 (which represents the upper end of the THIavg scale in BEL-LUX) were lower for BEL-LUX (0.70-0.80) than for SPA (0.83-0.85). Overall, animals producing in the more temperate climates and semi-extensive grazing systems of BEL and LUX showed HS at lower heat loads and more re-ranking across the THI scale than animals producing in the warmer climate and intensive indoor system of SPA.
|
|
|
Kässi, P., Känkänen, H., Niskanen, O., Lehtonen, H., & Höglind, M. (2015). Farm level approach to manage grass yield variation under climate change in Finland and north-western Russia. Biosystems Engineering, 140, 11–22.
Abstract: Cattle feeding in Northern Europe is based on grass silage, but grass growth is highly dependent on weather conditions. If ensuring sufficient silage availability in every situation is prioritised, the lowest expected yield level determines the cultivated area in farmers’ decision-making. One way to manage the variation in grass yield is to increase grass production and silage storage capacity so that they exceed the annual consumption at the farm. The cost of risk management in the current and the projected future climate was calculated taking into account grassland yield and yield variability for three study areas under current and mid-21st century climate conditions. The dataset on simulated future grass yields used as input for the risk management calculations were taken from a previously published simulation study. Strategies investigated included using up to 60% more silage grass area than needed in a year with average grass yields, and storing silage for up to 6 months more than consumed in a year (buffer storage). According to the results, utilising an excess silage grass area of 20% and a silage buffer storage capacity of 6 months were the most economic ways of managing drought risk in both the baseline climate and the projected climate of 2046-2065. It was found that the silage yield risk due to drought is likely to decrease in all studied locations, but the drought risk and costs implied still remain significant. (C) 2015 IAgrE. Published by Elsevier Ltd. All rights reserved.
|
|
|
Özkan, Ş., & Hill, J. (2015). Implementing innovative farm management practices on dairy farms:a review of feeding systems. Turkish Journal of Veterinary and Animal Sciences, 39, 1–9.
Abstract: The Australian dairy industry relies primarily on pasture for its feed supply. However, the variability in rainfall negatively affects plant growth, leading to uncertainty in dryland feed supply, especially during periods of high milk price. New feeding (complementary) systems combining perennial ryegrass with another crop and/or pasture species may have the potential to mitigate this seasonal risk and improve productivity and profitability by providing off-season feed. To date, the majority of research studying the integration of alternative crops into pasture-based systems has focused on substitution and utilization of alternative feed sources. There has been little emphasis on the impacts of integration of forage crops into pasture-based systems. This review focuses on pasture-based feeding systems in southeastern Australia and how transitioning of systems contributes to improved productivity leading to improved profitability for dairy farmers.
|
|
|
Özkan, Ş., Farquharson, R. J., Hill, J., & Malcolm, B. (2015). A stochastic analysis of the impact of input parameters on profit of Australian pasture-based dairy farms under variable carbon price scenarios. Environmental Science & Policy, 48, 163–171.
Abstract: The imposition of a carbon tax in the economy will have indirect impacts on dairy farmers in Australia. Although there is a great deal of information available regarding mitigation strategies both in Australia and internationally, there seems to be a lack of research investigating the variable prices of carbon-based emissions on dairy farm operating profits in Australia. In this study, a stochastic analysis comparing the uncertainty in income in response to different prices on carbon-based emissions was conducted. The impact of variability in pasture consumption and variable prices of concentrates and hay on farm profitability was also investigated. The two different feeding systems examined were a ryegrass pasture-based system (RM) and a complementary forage-based system (CF). Imposing a carbon price ($20-$60) and not changing the systems reduced the farm operating profits by 28.4% and 25.6% in the RM and CF systems, respectively compared to a scenario where no carbon price was imposed. Different farming businesses will respond to variability in the rapidly changing operating environment such as fluctuations in pasture availability, price of purchased feeds and price of milk or carbon emissions differently. Further, in case there is a carbon price imposed for GHG emissions emanated from dairy farming systems, changing from pasture-based to more complex feeding systems incorporating home-grown double crops may reduce the reductions in farm operating profits. There is opportunity for future studies to focus on the impacts of different mitigation strategies and policy applications on farm operating profits. (C) 2015 Elsevier Ltd. All rights reserved.
|
|