|
De Pascale, S., Orsini, F., Caputo, R., Palermo, M. A., Barbieri, G., & Maggio, A. (2012). Seasonal and multiannual effects of salinisation on tomato yield and fruit quality. Functional Plant Biology, 39(8), 689–698.
Abstract: The effects of short-and long-term salinisation were studied by comparing tomato growth on a soil exposed to one-season salinisation (short term) vs growth on a soil exposed to >20 years salinisation (long term). Remarkable differences were associated to substantial modifications of the soil physical-chemical characteristics in the root zone, including deteriorated structure, reduced infiltration properties and increased pH. Fresh yield, fruit number and fruit weight were similarly affected by short-and long-term salinisation. In contrast, the marketable yield was significantly lower in the long-term salinised soil-a response that was also associated to nutritional imbalance (mainly referred to P and K). As reported for plants growing under oxygen deprivation stress, the antioxidant capacity of the water soluble fraction of salinised tomato fruits was enhanced by short-term salinisation, also. Overall, long-term salinisation may cause physiological imbalances and yield reductions that cannot be solely attributed to hyperosmotic stress and ionic toxicity. Therefore, the ability of plants to cope with nutritional deficiency and withstand high pH and anoxia may be important traits that should be considered to improve plant tolerance to long-term salinised soils.
|
|
|
Irz, X., & Kuosmanen, N. (2013). Explaining growth in demand for dairy products in Finland: an econometric analysis. Food Economics, 9(sup5), 47–56.
Abstract: The dairy sector represents the cornerstone of Finnish agriculture but faces new challenges linked to the decoupling of farm subsidies and abolition of milk production quotas. Because of its increasing exposure to market forces, the sector must anticipate future changes in demand and deliver precisely what Finnish consumers want. This paper contributes to that goal by analyzing retroactively the drivers of demand for dairy products over the period 1975–2010 using National Accounts Data. After presenting the evolution of consumption for dairy products, we estimate a complete system of demand for food and dairy products and use it to decompose demand growth into a substitution effect, income effect, and trend effect. The analysis points to the severity of the challenges that the sector is facing. Stagnant consumption is at least partially the result of continuous but adverse taste changes, and as Finnish consumers grow more prosperous, they allocate an increasingly smaller share of their food budget to the dairy group. The low own-price elasticity of demand for dairy products also limits the benefits to the sector of growth in milk production. Hence, business-as-usual will result in the dwindling importance of the dairy sector in the Finnish food chain. Innovation and product differentiation, perhaps emphasizing the attributes of livestock production processes, are clearly required to counter this evolution.
|
|
|
Porter, J. R., Dyball, R., Dumaresq, D., Deutsch, L., & Matsuda, H. (2014). Feeding capitals: Urban food security and self-provisioning in Canberra, Copenhagen and Tokyo. Global Food Security, 3(1), 1–7.
Abstract: Most people live in cities, but most food system studies and food security issues focus on the rural poor. Urban populations differ from rural populations in their food consumption by being generally wealthier, requiring food trade for their food security, defined as the extent to which people have adequate diets. Cities rarely have the self-provisioning capacity to satisfy their own food supply, understood as the extent to which the food consumed by the city’s population is produced from the city’s local agro-ecosystems. Almost inevitably, a city’s food security is augmented by production from remote landscapes, both internal and external in terms of a state’s jurisdiction. We reveal the internal and external food flows necessary for the food security of three wealthy capital cities (Canberra, Australia; Copenhagen, Denmark; Tokyo, Japan). These cities cover two orders of magnitude in population size and three orders of magnitude in population density. From traded volumes of food and their sources into the cities, we calculate the productivity of the city’s regional and non-regional ecosystems that provide food for these cities and estimate the overall utilised land area. The three cities exhibit differing degrees of food self provisioning capacity and exhibit large differences in the areas on which they depend to provide their food. We show that, since 1965, global land area effectively imported to produce food for these cities has increased with their expanding populations, with large reductions in the percentage of demand met by local agro-ecosystems. The physical trading of food commodities embodies ecosystem services, such as water, soil fertility and pollination that are required for land-based food production. This means that the trade in these embodied ecosystem services has become as important for food security as traditional economic mechanisms such as market access and trade. A future policy question, raised by our study, is the degree to which governments will remain committed to open food trade policies in the face of national political unrest caused by food shortages. Our study demonstrates the need to determine the food security and self-provisioning capacity of a wide range of rich and poor cities, taking into account the global location of the ecosystems that are provisioning them. (C) 2013 Elsevier B.V. All rights reserved.
|
|